Cargando…

Wiener Chaos: Moments, Cumulants and Diagrams A survey with Computer Implementation /

The concept of Wiener chaos generalizes to an infinite-dimensional setting the properties of orthogonal polynomials associated with probability distributions on the real line. It plays a crucial role in modern probability theory, with applications ranging from Malliavin calculus to stochastic differ...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Peccati, Giovanni (Autor), Taqqu, Murad S. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Milano : Springer Milan : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Bocconi & Springer Series, Mathematics, Statistics, Finance and Economics, 1
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-88-470-1679-8
003 DE-He213
005 20220119220452.0
007 cr nn 008mamaa
008 110406s2011 it | s |||| 0|eng d
020 |a 9788847016798  |9 978-88-470-1679-8 
024 7 |a 10.1007/978-88-470-1679-8  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Peccati, Giovanni.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Wiener Chaos: Moments, Cumulants and Diagrams  |h [electronic resource] :  |b A survey with Computer Implementation /  |c by Giovanni Peccati, Murad S. Taqqu. 
250 |a 1st ed. 2011. 
264 1 |a Milano :  |b Springer Milan :  |b Imprint: Springer,  |c 2011. 
300 |a XIII, 274 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Bocconi & Springer Series, Mathematics, Statistics, Finance and Economics,  |x 2039-148X ;  |v 1 
520 |a The concept of Wiener chaos generalizes to an infinite-dimensional setting the properties of orthogonal polynomials associated with probability distributions on the real line. It plays a crucial role in modern probability theory, with applications ranging from Malliavin calculus to stochastic differential equations and from probabilistic approximations to mathematical finance. This book is concerned with combinatorial structures arising from the study of chaotic random variables related to infinitely divisible random measures. The combinatorial structures involved are those of partitions of finite sets, over which Möbius functions and related inversion formulae are defined. This combinatorial standpoint (which is originally due to Rota and Wallstrom) provides an ideal framework for diagrams, which are graphical devices used to compute moments and cumulants of random variables. Several applications are described, in particular, recent limit theorems for chaotic random variables. An Appendix presents a computer implementation in MATHEMATICA for many of the formulae. 
650 0 |a Probabilities. 
650 0 |a Social sciences-Mathematics. 
650 0 |a Discrete mathematics. 
650 0 |a Measure theory. 
650 1 4 |a Probability Theory. 
650 2 4 |a Mathematics in Business, Economics and Finance. 
650 2 4 |a Discrete Mathematics. 
650 2 4 |a Measure and Integration. 
700 1 |a Taqqu, Murad S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9788847016781 
776 0 8 |i Printed edition:  |z 9788847056046 
776 0 8 |i Printed edition:  |z 9788847016804 
830 0 |a Bocconi & Springer Series, Mathematics, Statistics, Finance and Economics,  |x 2039-148X ;  |v 1 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-88-470-1679-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)