Cargando…

Differential Equations and Numerical Analysis Tiruchirappalli, India, January 2015 /

This book offers an ideal introduction to singular perturbation problems, and a valuable guide for researchers in the field of differential equations. It also includes chapters on new contributions to both fields: differential equations and singular perturbation problems. Written by experts who are...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Sigamani, Valarmathi (Editor ), Miller, John J. H. (Editor ), Narasimhan, Ramanujam (Editor ), Mathiazhagan, Paramasivam (Editor ), Victor, Franklin (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Delhi : Springer India : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Springer Proceedings in Mathematics & Statistics, 172
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • Elementary Tutorial on Numerical Methods for Singular Perturbation Problems
  • Interior Layers in Singularly Perturbed Problems
  • Singularly Perturbed Delay Differential Equations and Numerical Methods
  • Initial or boundary value problems for systems of singularly perturbed differential equations and their solution profile
  • Convergence of the Crank Nicolson Method for a singularly perturbed parabolic reaction-diffusion system
  • Iterative Numerical Method for a System of Singularly Perturbed Reaction - Diffusion Equations with Negative shifts
  • Parameter Uniform Numerical Method for Second Order Singularly Perturbed Turning Point Problems with Robin Boundary Conditions
  • Numerical Method for a Singularly Perturbed Boundary Value Problem for a Linear Parabolic Second Order Delay Differential Equation
  • A Parameter Uniform Numerical Method for an Initial Value Problem for a System of Singularly Perturbed Delay Differential Equations with Discontinuous Source terms
  • A parameter uniform first order convergent numerical method for a semilinear system of singularly perturbed second order delay differential equations.