Cargando…

Application of Evolutionary Algorithms for Multi-objective Optimization in VLSI and Embedded Systems

This book describes how evolutionary algorithms (EA), including genetic algorithms (GA) and particle swarm optimization (PSO) can be utilized for solving multi-objective optimization problems in the area of embedded and VLSI system design. Many complex engineering optimization problems can be modell...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Bhuvaneswari, M.C (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Delhi : Springer India : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-81-322-1958-3
003 DE-He213
005 20220203131800.0
007 cr nn 008mamaa
008 140820s2015 ii | s |||| 0|eng d
020 |a 9788132219583  |9 978-81-322-1958-3 
024 7 |a 10.1007/978-81-322-1958-3  |2 doi 
050 4 |a TK7867-7867.5 
072 7 |a TJFC  |2 bicssc 
072 7 |a TEC008010  |2 bisacsh 
072 7 |a TJFC  |2 thema 
082 0 4 |a 621.3815  |2 23 
245 1 0 |a Application of Evolutionary Algorithms for Multi-objective Optimization in VLSI and Embedded Systems  |h [electronic resource] /  |c edited by M.C. Bhuvaneswari. 
250 |a 1st ed. 2015. 
264 1 |a New Delhi :  |b Springer India :  |b Imprint: Springer,  |c 2015. 
300 |a XI, 174 p. 63 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction to Multi-Objective Evolutionary Algorithms -- Hardware/Software Partitioning for Embedded Systems -- Circuit Partitioning for VLSI Layout -- Design of Operational Amplifier -- Design Space Exploration for Scheduling and Allocation in High Level Synthesis of Datapaths -- Design Space Exploration of Datapath (Architecture) in High Level Synthesis for Computation Intensive Applications -- Design Flow from Algorithm to RTL using Evolutionary Exploration Approach -- Crosstalk Delay Fault Test Generation -- Scheduling in Heterogeneous Distributed Systems.  . 
520 |a This book describes how evolutionary algorithms (EA), including genetic algorithms (GA) and particle swarm optimization (PSO) can be utilized for solving multi-objective optimization problems in the area of embedded and VLSI system design. Many complex engineering optimization problems can be modelled as multi-objective formulations. This book provides an introduction to multi-objective optimization using meta-heuristic algorithms, GA and PSO, and how they can be applied to problems like hardware/software partitioning in embedded systems, circuit partitioning in VLSI, design of operational amplifiers in analog VLSI, design space exploration in high-level synthesis, delay fault testing in VLSI testing, and scheduling in heterogeneous distributed systems. It is shown how, in each case, the various aspects of the EA, namely its representation, and operators like crossover, mutation, etc. can be separately formulated to solve these problems. This book is intended for design engineers and researchers in the field of VLSI and embedded system design. The book introduces multi-objective GA and PSO in a simple and easily understandable way that will appeal to introductory readers. 
650 0 |a Electronic circuits. 
650 0 |a Computational intelligence. 
650 0 |a Mathematical optimization. 
650 1 4 |a Electronic Circuits and Systems. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Optimization. 
700 1 |a Bhuvaneswari, M.C.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9788132219590 
776 0 8 |i Printed edition:  |z 9788132219576 
776 0 8 |i Printed edition:  |z 9788132235392 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-81-322-1958-3  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)