Cargando…

Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics

This book provides cutting-edge results on the existence of multiple positive periodic solutions of first-order functional differential equations. It demonstrates how the Leggett-Williams fixed-point theorem can be applied to study the existence of two or three positive periodic solutions of functio...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Padhi, Seshadev (Autor), Graef, John R. (Autor), Srinivasu, P. D. N. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Delhi : Springer India : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-81-322-1895-1
003 DE-He213
005 20220119194524.0
007 cr nn 008mamaa
008 140509s2014 ii | s |||| 0|eng d
020 |a 9788132218951  |9 978-81-322-1895-1 
024 7 |a 10.1007/978-81-322-1895-1  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Padhi, Seshadev.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics  |h [electronic resource] /  |c by Seshadev Padhi, John R. Graef, P. D. N. Srinivasu. 
250 |a 1st ed. 2014. 
264 1 |a New Delhi :  |b Springer India :  |b Imprint: Springer,  |c 2014. 
300 |a XIV, 144 p. 8 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1. Introduction -- Chapter 2. Positive Periodic Solutions of Nonlinear Functional Differential Equations with Parameter λ -- Chapter 3. Multiple Periodic Solutions of a System of Functional Differential Equations -- Chapter 4. Multiple Periodic Solutions of Nonlinear Functional Differential Equations -- Chapter 5. Asymptotic Behavior of Periodic Solutions of Differential Equations of First Order -- Bibliography. 
520 |a This book provides cutting-edge results on the existence of multiple positive periodic solutions of first-order functional differential equations. It demonstrates how the Leggett-Williams fixed-point theorem can be applied to study the existence of two or three positive periodic solutions of functional differential equations with real-world applications, particularly with regard to the Lasota-Wazewska model, the Hematopoiesis model, the Nicholsons Blowflies model, and some models with Allee effects. Many interesting sufficient conditions are given for the dynamics that include nonlinear characteristics exhibited by population models. The last chapter provides results related to the global appeal of solutions to the models considered in the earlier chapters. The techniques used in this book can be easily understood by anyone with a basic knowledge of analysis. This book offers a valuable reference guide for students and researchers in the field of differential equations with applications to biology, ecology, and the environment. 
650 0 |a Differential equations. 
650 0 |a Mathematical analysis. 
650 0 |a Biomathematics. 
650 0 |a Integral equations. 
650 1 4 |a Differential Equations. 
650 2 4 |a Analysis. 
650 2 4 |a Mathematical and Computational Biology. 
650 2 4 |a Integral Equations. 
700 1 |a Graef, John R.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Srinivasu, P. D. N.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9788132218968 
776 0 8 |i Printed edition:  |z 9788132218944 
776 0 8 |i Printed edition:  |z 9788132235422 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-81-322-1895-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)