Cargando…

Non-Linear Feedback Neural Networks VLSI Implementations and Applications /

This book aims to present a viable alternative to the Hopfield Neural Network (HNN) model for analog computation. It is well known that the standard HNN suffers from problems of convergence to local minima, and requirement of a large number of neurons and synaptic weights. Therefore, improved soluti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ansari, Mohd. Samar (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Delhi : Springer India : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Studies in Computational Intelligence, 508
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-81-322-1563-9
003 DE-He213
005 20220117020521.0
007 cr nn 008mamaa
008 130902s2014 ii | s |||| 0|eng d
020 |a 9788132215639  |9 978-81-322-1563-9 
024 7 |a 10.1007/978-81-322-1563-9  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Ansari, Mohd. Samar.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Non-Linear Feedback Neural Networks  |h [electronic resource] :  |b VLSI Implementations and Applications /  |c by Mohd. Samar Ansari. 
250 |a 1st ed. 2014. 
264 1 |a New Delhi :  |b Springer India :  |b Imprint: Springer,  |c 2014. 
300 |a XXII, 201 p. 79 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 508 
505 0 |a Introduction -- Background -- Voltage-mode Neural Network for the Solution of Linear Equations -- Mixed-mode Neural Circuit for Solving Linear Equations -- Non-Linear Feedback Neural Circuits for Linear and Quadratic Programming -- OTA-based Implementations of Mixed-mode Neural Circuits -- Appendix A: Mixed-mode Neural Network for Graph Colouring -- Appendix B: Mixed-mode Neural Network for Ranking. 
520 |a This book aims to present a viable alternative to the Hopfield Neural Network (HNN) model for analog computation. It is well known that the standard HNN suffers from problems of convergence to local minima, and requirement of a large number of neurons and synaptic weights. Therefore, improved solutions are needed. The non-linear synapse neural network (NoSyNN) is one such possibility and is discussed in detail in this book. This book also discusses the applications in computationally intensive tasks like graph coloring, ranking, and linear as well as quadratic programming. The material in the book is useful to students, researchers and academician working in the area of analog computation. 
650 0 |a Computational intelligence. 
650 0 |a Electronic circuits. 
650 0 |a Neural networks (Computer science) . 
650 0 |a Electronics. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Electronic Circuits and Systems. 
650 2 4 |a Mathematical Models of Cognitive Processes and Neural Networks. 
650 2 4 |a Electronics and Microelectronics, Instrumentation. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9788132215646 
776 0 8 |i Printed edition:  |z 9788132215622 
776 0 8 |i Printed edition:  |z 9788132228967 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 508 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-81-322-1563-9  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)