Cargando…

Statistical Inference for Discrete Time Stochastic Processes

This work is an overview of statistical inference in stationary, discrete time stochastic processes.  Results in the last fifteen years, particularly on non-Gaussian sequences and semi-parametric and non-parametric analysis have been reviewed. The first chapter gives a background of results on marti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rajarshi, M. B. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Delhi : Springer India : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:SpringerBriefs in Statistics,
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • CAN Estimators from dependent observations
  • Markov chains and their extensions
  • Non-Gaussian ARMA models
  • Estimating Functions
  • Estimation of joint densities and conditional expectation
  • Bootstrap and other resampling procedures
  • Index.