Cargando…

The Borel-Cantelli Lemma

This monograph provides an extensive treatment of the theory and applications of the celebrated Borel-Cantelli Lemma. Starting from some of the basic facts of the axiomatic probability theory, it embodies the classical versions of these lemma, together with the well known as well as the most recent...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chandra, Tapas Kumar (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Delhi : Springer India : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:SpringerBriefs in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-81-322-0677-4
003 DE-He213
005 20220113042337.0
007 cr nn 008mamaa
008 120703s2012 ii | s |||| 0|eng d
020 |a 9788132206774  |9 978-81-322-0677-4 
024 7 |a 10.1007/978-81-322-0677-4  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Chandra, Tapas Kumar.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Borel-Cantelli Lemma  |h [electronic resource] /  |c by Tapas Kumar Chandra. 
250 |a 1st ed. 2012. 
264 1 |a New Delhi :  |b Springer India :  |b Imprint: Springer,  |c 2012. 
300 |a XII, 106 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Statistics,  |x 2191-5458 
505 0 |a 1. Introductory Chapter -- 2. Extensions of the First Borel-Cantelli Lemma -- 3. Variants of the Second Borel-Cantelli Lemma -- 4. A Strengthened Form of the Second Borel-Cantelli Lemma -- 5. Conditional Borel-Cantelli Lemmas -- 6. Miscellaneous Results. 
520 |a This monograph provides an extensive treatment of the theory and applications of the celebrated Borel-Cantelli Lemma. Starting from some of the basic facts of the axiomatic probability theory, it embodies the classical versions of these lemma, together with the well known as well as the most recent extensions of them due to Barndorff-Nielsen, Balakrishnan and Stepanov, Erdos and Renyi, Kochen and Stone, Petrov and the present author. The versions of the second Borel-Cantelli Lemma for pair wise negative quadrant dependent sequences, weakly *-mixing sequences, mixing sequences (due to Renyi) and for many other dependent sequences are all included. The special feature of the book is a detailed discussion of a strengthened form of the second Borel-Cantelli Lemma and the conditional form of the Borel-Cantelli Lemmas due to Levy, Chen and Serfling. All these results are well illustrated by means of many interesting examples. All the proofs are rigorous, complete and lucid. An extensive list of research papers, some of which are forthcoming, is provided. The book can be used for a self study and as an invaluable research reference on the present topic. 
650 0 |a Statistics . 
650 0 |a Probabilities. 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Probability Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9788132206781 
776 0 8 |i Printed edition:  |z 9788132206767 
830 0 |a SpringerBriefs in Statistics,  |x 2191-5458 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-81-322-0677-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)