Cargando…

The Limit Shape Problem for Ensembles of Young Diagrams

This book treats ensembles of Young diagrams originating from group-theoretical contexts and investigates what statistical properties are observed there in a large-scale limit. The focus is mainly on analyzing the interesting phenomenon that specific curves appear in the appropriate scaling limit fo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hora, Akihito (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Tokyo : Springer Japan : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:SpringerBriefs in Mathematical Physics, 17
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-4-431-56487-4
003 DE-He213
005 20220116024222.0
007 cr nn 008mamaa
008 161110s2016 ja | s |||| 0|eng d
020 |a 9784431564874  |9 978-4-431-56487-4 
024 7 |a 10.1007/978-4-431-56487-4  |2 doi 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
100 1 |a Hora, Akihito.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Limit Shape Problem for Ensembles of Young Diagrams  |h [electronic resource] /  |c by Akihito Hora. 
250 |a 1st ed. 2016. 
264 1 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2016. 
300 |a IX, 73 p. 9 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematical Physics,  |x 2197-1765 ;  |v 17 
505 0 |a 1. Introduction -- 2. Prerequisite materials -- 2.1 representations of the symmetric group -- 2.2 free probability -- 2.3 ensembles of Young diagrams -- 3. Analysis of the Kerov-Olshanski algebra -- 3.1 polynomial functions of Young diagrams -- 3.2 Kerov polynomials -- 4. Static model -- 4.1 Plancherel ensemble -- 4.2 Thoma and other ensembles -- 5. Dynamic model -- 5.1 hydrodynamic limit for the Plancherel ensemble. 
520 |a This book treats ensembles of Young diagrams originating from group-theoretical contexts and investigates what statistical properties are observed there in a large-scale limit. The focus is mainly on analyzing the interesting phenomenon that specific curves appear in the appropriate scaling limit for the profiles of Young diagrams. This problem is regarded as an important origin of recent vital studies on harmonic analysis of huge symmetry structures. As mathematics, an asymptotic theory of representations is developed of the symmetric groups of degree n as n goes to infinity. The framework of rigorous limit theorems (especially the law of large numbers) in probability theory is employed as well as combinatorial analysis of group characters of symmetric groups and applications of Voiculescu's free probability. The central destination here is a clear description of the asymptotic behavior of rescaled profiles of Young diagrams in the Plancherel ensemble from both static and dynamic points of view. 
650 0 |a Mathematical physics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Group theory. 
650 0 |a Probabilities. 
650 0 |a System theory. 
650 1 4 |a Mathematical Physics. 
650 2 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Probability Theory. 
650 2 4 |a Complex Systems. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9784431564850 
776 0 8 |i Printed edition:  |z 9784431564867 
830 0 |a SpringerBriefs in Mathematical Physics,  |x 2197-1765 ;  |v 17 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-4-431-56487-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)