Cargando…

Modern Methodology and Applications in Spatial-Temporal Modeling

This book provides a modern introductory tutorial on specialized methodological and applied aspects of spatial and temporal modeling. The areas covered involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the firs...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Peters, Gareth William (Editor ), Matsui, Tomoko (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Tokyo : Springer Japan : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:JSS Research Series in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-4-431-55339-7
003 DE-He213
005 20220114132040.0
007 cr nn 008mamaa
008 160108s2015 ja | s |||| 0|eng d
020 |a 9784431553397  |9 978-4-431-55339-7 
024 7 |a 10.1007/978-4-431-55339-7  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
245 1 0 |a Modern Methodology and Applications in Spatial-Temporal Modeling  |h [electronic resource] /  |c edited by Gareth William Peters, Tomoko Matsui. 
250 |a 1st ed. 2015. 
264 1 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 111 p. 17 illus., 4 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a JSS Research Series in Statistics,  |x 2364-0065 
505 0 |a 1 Nonparametric Bayesian Inference with Kernel Mean Embedding (Kenji Fukumizu) -- 2 How to Utilise Sensor Network Data to Efficiently Perform Model Calibration and Spatial Field Reconstruction (Gareth W. Peters, Ido Nevat and Tomoko Matsui) -- 3 Speech and Music Emotion Recognition using Gaussian Processes (Konstantin Markov and Tomoko Matsui) -- 4 Topic Modeling for Speech and Language Processing (Jen-Tzung Chien). 
520 |a This book provides a modern introductory tutorial on specialized methodological and applied aspects of spatial and temporal modeling. The areas covered involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter deals with non-parametric Bayesian inference via a recently developed framework known as kernel mean embedding which has had a significant influence in machine learning disciplines. The second chapter takes up non-parametric statistical methods for spatial field reconstruction and exceedance probability estimation based on Gaussian process-based models in the context of wireless sensor network data. The third chapter presents signal-processing methods applied to acoustic mood analysis based on music signal analysis. The fourth chapter covers models that are applicable to time series modeling in the domain of speech and language processing. This includes aspects of factor analysis, independent component analysis in an unsupervised learning setting. The chapter moves on to include more advanced topics on generalized latent variable topic models based on hierarchical Dirichlet processes which recently have been developed in non-parametric Bayesian literature. The final chapter discusses aspects of dependence modeling, primarily focusing on the role of extreme tail-dependence modeling, copulas, and their role in wireless communications system models. 
650 0 |a Statistics . 
650 0 |a Mathematical statistics-Data processing. 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics and Computing. 
650 2 4 |a Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
700 1 |a Peters, Gareth William.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Matsui, Tomoko.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9784431553380 
776 0 8 |i Printed edition:  |z 9784431553403 
830 0 |a JSS Research Series in Statistics,  |x 2364-0065 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-4-431-55339-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)