Cargando…

Harmonic Analysis on Exponential Solvable Lie Groups

This book is the first one that brings together recent results on the harmonic analysis of exponential solvable Lie groups. There still are many interesting open problems, and the book contributes to the future progress of this research field. As well, various related topics are presented to motivat...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Fujiwara, Hidenori (Autor), Ludwig, Jean (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Tokyo : Springer Japan : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Springer Monographs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-4-431-55288-8
003 DE-He213
005 20220115092212.0
007 cr nn 008mamaa
008 141205s2015 ja | s |||| 0|eng d
020 |a 9784431552888  |9 978-4-431-55288-8 
024 7 |a 10.1007/978-4-431-55288-8  |2 doi 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
100 1 |a Fujiwara, Hidenori.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Harmonic Analysis on Exponential Solvable Lie Groups  |h [electronic resource] /  |c by Hidenori Fujiwara, Jean Ludwig. 
250 |a 1st ed. 2015. 
264 1 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2015. 
300 |a XI, 465 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 2196-9922 
520 |a This book is the first one that brings together recent results on the harmonic analysis of exponential solvable Lie groups. There still are many interesting open problems, and the book contributes to the future progress of this research field. As well, various related topics are presented to motivate young researchers. The orbit method invented by Kirillov is applied to study basic problems in the analysis on exponential solvable Lie groups. This method tells us that the unitary dual of these groups is realized as the space of their coadjoint orbits. This fact is established using the Mackey theory for induced representations, and that mechanism is explained first. One of the fundamental problems in the representation theory is the irreducible decomposition of induced or restricted representations. Therefore, these decompositions are studied in detail before proceeding to various related problems: the multiplicity formula, Plancherel formulas, intertwining operators, Frobenius reciprocity, and associated algebras of invariant differential operators. The main reasoning in the proof of the assertions made here is induction, and for this there are not many tools available. Thus a detailed analysis of the objects listed above is difficult even for exponential solvable Lie groups, and it is often assumed that the group is nilpotent. To make the situation clearer and future development possible, many concrete examples are provided. Various topics presented in the nilpotent case still have to be studied for solvable Lie groups that are not nilpotent. They all present interesting and important but difficult problems, however, which should be addressed in the near future. Beyond the exponential case, holomorphically induced representations introduced by Auslander and Kostant are needed, and for that reason they are included in this book.  . 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Harmonic analysis. 
650 0 |a Functional analysis. 
650 1 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Functional Analysis. 
700 1 |a Ludwig, Jean.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9784431552895 
776 0 8 |i Printed edition:  |z 9784431552871 
776 0 8 |i Printed edition:  |z 9784431563907 
830 0 |a Springer Monographs in Mathematics,  |x 2196-9922 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-4-431-55288-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)