Cargando…

Lie Theory and Its Applications in Physics Varna, Bulgaria, June 2013 /

Traditionally, Lie theory is a tool to build mathematical models for physical systems. Recently, the trend is towards geometrization of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry which is very helpful in un...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Dobrev, Vladimir (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Tokyo : Springer Japan : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Springer Proceedings in Mathematics & Statistics, 111
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-4-431-55285-7
003 DE-He213
005 20220120105004.0
007 cr nn 008mamaa
008 150126s2014 ja | s |||| 0|eng d
020 |a 9784431552857  |9 978-4-431-55285-7 
024 7 |a 10.1007/978-4-431-55285-7  |2 doi 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a PBM  |2 thema 
082 0 4 |a 516  |2 23 
245 1 0 |a Lie Theory and Its Applications in Physics  |h [electronic resource] :  |b Varna, Bulgaria, June 2013 /  |c edited by Vladimir Dobrev. 
250 |a 1st ed. 2014. 
264 1 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2014. 
300 |a XIII, 571 p. 63 illus., 12 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1017 ;  |v 111 
520 |a Traditionally, Lie theory is a tool to build mathematical models for physical systems. Recently, the trend is towards geometrization of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry which is very helpful in understanding its structure. Geometrization and symmetries are meant in their widest sense, i.e., representation theory, algebraic geometry, infinite-dimensional Lie algebras and groups, superalgebras and supergroups, groups and quantum groups, noncommutative geometry, symmetries of linear and nonlinear PDE, special functions, and others. Furthermore, the necessary tools from functional analysis and number theory are included. This is a big interdisciplinary and interrelated field. Samples of these fresh trends are presented in this volume, based on contributions from the Workshop "Lie Theory and Its Applications in Physics" held near Varna (Bulgaria) in June 2013. This book is suitable for a broad audience of mathematicians, mathematical physicists, and theoretical physicists and researchers in the field of Lie Theory. 
650 0 |a Geometry. 
650 0 |a Mathematical physics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 1 4 |a Geometry. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Topological Groups and Lie Groups. 
700 1 |a Dobrev, Vladimir.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9784431552840 
776 0 8 |i Printed edition:  |z 9784431552864 
776 0 8 |i Printed edition:  |z 9784431562337 
830 0 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1017 ;  |v 111 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-4-431-55285-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)