Cargando…

Relativistic Dissipative Hydrodynamic Description of the Quark-Gluon Plasma

This thesis presents theoretical and numerical studies on phenomenological description of the quark-gluon plasma (QGP), a many-body system of elementary particles.   The author formulates a causal theory of hydrodynamics for systems with net charges from the law of increasing entropy and a momentum...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Monnai, Akihiko (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Tokyo : Springer Japan : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Springer Theses, Recognizing Outstanding Ph.D. Research,
Temas:
Acceso en línea:Texto Completo
Descripción
Sumario:This thesis presents theoretical and numerical studies on phenomenological description of the quark-gluon plasma (QGP), a many-body system of elementary particles.   The author formulates a causal theory of hydrodynamics for systems with net charges from the law of increasing entropy and a momentum expansion method. The derived equation results can be applied not only to collider physics, but also to the early universe and ultra-cold atoms.   The author also develops novel off-equilibrium hydrodynamic models for the longitudinal expansion of the QGP on the basis of these equations. Numerical estimations show that convection and entropy production during the hydrodynamic evolution are key to explaining excessive charged particle production, recently observed at the Large Hadron Collider. Furthermore, the analyses at finite baryon density indicate that the energy available for QGP production is larger than the amount conventionally assumed.
Descripción Física:XXI, 127 p. 29 illus., 28 illus. in color. online resource.
ISBN:9784431547983
ISSN:2190-5061