Cargando…

Nevanlinna Theory in Several Complex Variables and Diophantine Approximation

The aim of this book is to provide a comprehensive account of higher dimensional Nevanlinna theory and its relations with Diophantine approximation theory for graduate students and interested researchers. This book with nine chapters systematically describes Nevanlinna theory of meromorphic maps bet...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Noguchi, Junjiro (Autor), Winkelmann, Jörg (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Tokyo : Springer Japan : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, 350
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-4-431-54571-2
003 DE-He213
005 20220116021546.0
007 cr nn 008mamaa
008 131209s2014 ja | s |||| 0|eng d
020 |a 9784431545712  |9 978-4-431-54571-2 
024 7 |a 10.1007/978-4-431-54571-2  |2 doi 
050 4 |a QA331.7 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKD  |2 thema 
082 0 4 |a 515.9  |2 23 
100 1 |a Noguchi, Junjiro.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Nevanlinna Theory in Several Complex Variables and Diophantine Approximation  |h [electronic resource] /  |c by Junjiro Noguchi, Jörg Winkelmann. 
250 |a 1st ed. 2014. 
264 1 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2014. 
300 |a XIV, 416 p. 6 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 2196-9701 ;  |v 350 
505 0 |a Nevanlinna Theory of Meromorphic Functions -- First Main Theorem -- Differentiably Non-Degenerate Meromorphic Maps -- Entire Curves into Algebraic Varieties -- Semi-Abelian Varieties -- Entire Curves into Semi-Abelian Varieties -- Kobayashi Hyperbolicity -- Nevanlinna Theory over Function Fields -- Diophantine Approximation -- Bibliography -- Index -- Symbols. 
520 |a The aim of this book is to provide a comprehensive account of higher dimensional Nevanlinna theory and its relations with Diophantine approximation theory for graduate students and interested researchers. This book with nine chapters systematically describes Nevanlinna theory of meromorphic maps between algebraic varieties or complex spaces, building up from the classical theory of meromorphic functions on the complex plane with full proofs in Chap. 1 to the current state of research. Chapter 2 presents the First Main Theorem for coherent ideal sheaves in a very general form. With the preparation of plurisubharmonic functions, how the theory to be generalized in a higher dimension is described. In Chap. 3 the Second Main Theorem for differentiably non-degenerate meromorphic maps by Griffiths and others is proved as a prototype of higher dimensional Nevanlinna theory. Establishing such a Second Main Theorem for entire curves in general complex algebraic varieties is a wide-open problem. In Chap. 4, the Cartan-Nochka Second Main Theorem in the linear projective case and the Logarithmic Bloch-Ochiai Theorem in the case of general algebraic varieties are proved. Then the theory of entire curves in semi-abelian varieties, including the Second Main Theorem of Noguchi-Winkelmann-Yamanoi, is dealt with in full details in Chap. 6. For that purpose Chap. 5 is devoted to the notion of semi-abelian varieties. The result leads to a number of applications. With these results, the Kobayashi hyperbolicity problems are discussed in Chap. 7. In the last two chapters Diophantine approximation theory is dealt with from the viewpoint of higher dimensional Nevanlinna theory, and the Lang-Vojta conjecture is confirmed in some cases. In Chap. 8 the theory over function fields is discussed. Finally, in Chap. 9, the theorems of Roth, Schmidt, Faltings, and Vojta over number fields are presented and formulated in view of Nevanlinna theory with results motivated by those in Chaps. 4, 6, and 7. 
650 0 |a Functions of complex variables. 
650 0 |a Algebraic geometry. 
650 0 |a Number theory. 
650 1 4 |a Functions of a Complex Variable. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Number Theory. 
700 1 |a Winkelmann, Jörg.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9784431545729 
776 0 8 |i Printed edition:  |z 9784431545705 
776 0 8 |i Printed edition:  |z 9784431562139 
830 0 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 2196-9701 ;  |v 350 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-4-431-54571-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)