Cargando…

Bifurcation Theory for Hexagonal Agglomeration in Economic Geography

This book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students who are interested in nonlinear mathematics. The self-organ...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Ikeda, Kiyohiro (Autor), Murota, Kazuo (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Tokyo : Springer Japan : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-4-431-54258-2
003 DE-He213
005 20220115212121.0
007 cr nn 008mamaa
008 131108s2014 ja | s |||| 0|eng d
020 |a 9784431542582  |9 978-4-431-54258-2 
024 7 |a 10.1007/978-4-431-54258-2  |2 doi 
050 4 |a HD28-70 
072 7 |a TBC  |2 bicssc 
072 7 |a KJM  |2 bicssc 
072 7 |a TEC000000  |2 bisacsh 
072 7 |a TBC  |2 thema 
072 7 |a KJM  |2 thema 
082 0 4 |a 658.5  |2 23 
100 1 |a Ikeda, Kiyohiro.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Bifurcation Theory for Hexagonal Agglomeration in Economic Geography  |h [electronic resource] /  |c by Kiyohiro Ikeda, Kazuo Murota. 
250 |a 1st ed. 2014. 
264 1 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2014. 
300 |a XVII, 313 p. 69 illus., 15 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Hexagonal Distributions in Economic Geography and Krugman's Core-Periphery Model -- Group-Theoretic Bifurcation Theory -- Agglomeration in Racetrack Economy -- Introduction to Economic Agglomeration on a Hexagonal Lattice -- Hexagonal Distributions on Hexagonal Lattice -- Irreducible Representations of the Group for Hexagonal Lattice -- Matrix Representation for Economy on Hexagonal Lattice -- Hexagons of Christaller and L¨osch: Using Equivariant Branching Lemma -- Hexagons of Christaller and L¨osch: Solving Bifurcation Equations. 
520 |a This book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students who are interested in nonlinear mathematics. The self-organization of hexagonal agglomeration patterns of industrial regions was first predicted by the central place theory in economic geography based on investigations of southern Germany. The emergence of hexagonal agglomeration in economic geography models was envisaged by Krugman. In this book, after a brief introduction of central place theory and new economic geography, the missing link between them is discovered by elucidating the mechanism of the evolution of bifurcating hexagonal patterns. Pattern formation by such bifurcation is a well-studied topic in nonlinear mathematics, and group-theoretic bifurcation analysis is a well-developed theoretical tool. A finite hexagonal lattice is used to express uniformly distributed places, and the symmetry of this lattice is expressed by a finite group. Several mathematical methodologies indispensable for tackling the present problem are gathered in a self-contained manner. The existence of hexagonal distributions is verified by group-theoretic bifurcation analysis, first by applying the so-called equivariant branching lemma and next by solving the bifurcation equation. This book offers a complete guide for the application of group-theoretic bifurcation analysis to economic agglomeration on the hexagonal lattice. 
650 0 |a Industrial Management. 
650 0 |a System theory. 
650 0 |a Mathematical models. 
650 0 |a Mathematics. 
650 0 |a Social sciences. 
650 0 |a Population-Economic aspects. 
650 1 4 |a Industrial Management. 
650 2 4 |a Complex Systems. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Mathematics in the Humanities and Social Sciences. 
650 2 4 |a Population Economics. 
700 1 |a Murota, Kazuo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9784431542599 
776 0 8 |i Printed edition:  |z 9784431542575 
776 0 8 |i Printed edition:  |z 9784431563389 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-4-431-54258-2  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)