Cargando…

Theory of Hypergeometric Functions

This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its du...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Aomoto, Kazuhiko (Autor), Kita, Michitake (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Tokyo : Springer Japan : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Springer Monographs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-4-431-53938-4
003 DE-He213
005 20220115092107.0
007 cr nn 008mamaa
008 110521s2011 ja | s |||| 0|eng d
020 |a 9784431539384  |9 978-4-431-53938-4 
024 7 |a 10.1007/978-4-431-53938-4  |2 doi 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a PBM  |2 thema 
082 0 4 |a 516  |2 23 
100 1 |a Aomoto, Kazuhiko.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Theory of Hypergeometric Functions  |h [electronic resource] /  |c by Kazuhiko Aomoto, Michitake Kita. 
250 |a 1st ed. 2011. 
264 1 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2011. 
300 |a XVI, 320 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 2196-9922 
505 0 |a 1 Introduction: the Euler-Gauss Hypergeometric Function -- 2 Representation of Complex Integrals and Twisted de Rham Cohomologies -- 3 Hypergeometric functions over Grassmannians -- 4 Holonomic Difference Equations and Asymptotic Expansion References Index. 
520 |a This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its dual over the coefficients of local system. It is shown that hypergeometric integrals generally satisfy a holonomic system of linear differential equations with respect to the coefficients of polynomials and also satisfy a holonomic system of linear difference equations with respect to the exponents. These are deduced from Grothendieck-Deligne's rational de Rham cohomology on the one hand, and by multidimensional extension of Birkhoff's classical theory on analytic difference equations on the other. 
650 0 |a Geometry. 
650 0 |a Functional analysis. 
650 1 4 |a Geometry. 
650 2 4 |a Functional Analysis. 
700 1 |a Kita, Michitake.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9784431540878 
776 0 8 |i Printed edition:  |z 9784431539124 
776 0 8 |i Printed edition:  |z 9784431539391 
830 0 |a Springer Monographs in Mathematics,  |x 2196-9922 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-4-431-53938-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)