Cargando…

Bootstrapping Stationary ARMA-GARCH Models

Bootstrap technique is a useful tool for assessing uncertainty in statistical estimation and thus it is widely applied for risk management. Bootstrap is without doubt a promising technique, however, it is not applicable to all time series models. A wrong application could lead to a false decision to...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Shimizu, Kenichi (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Wiesbaden : Vieweg+Teubner Verlag : Imprint: Vieweg+Teubner Verlag, 2010.
Edición:1st ed. 2010.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-8348-9778-7
003 DE-He213
005 20220116092442.0
007 cr nn 008mamaa
008 101031s2010 gw | s |||| 0|eng d
020 |a 9783834897787  |9 978-3-8348-9778-7 
024 7 |a 10.1007/978-3-8348-9778-7  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Shimizu, Kenichi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Bootstrapping Stationary ARMA-GARCH Models  |h [electronic resource] /  |c by Kenichi Shimizu. 
250 |a 1st ed. 2010. 
264 1 |a Wiesbaden :  |b Vieweg+Teubner Verlag :  |b Imprint: Vieweg+Teubner Verlag,  |c 2010. 
300 |a 148 p. 12 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Bootstrap Does not Always Work -- Parametric AR(p)-ARCH(q) Models -- Parametric ARMA(p, q)- GARCH(r, s) Models -- Semiparametric AR(p)-ARCH(1) Models. 
520 |a Bootstrap technique is a useful tool for assessing uncertainty in statistical estimation and thus it is widely applied for risk management. Bootstrap is without doubt a promising technique, however, it is not applicable to all time series models. A wrong application could lead to a false decision to take too much risk. Kenichi Shimizu investigates the limit of the two standard bootstrap techniques, the residual and the wild bootstrap, when these are applied to the conditionally heteroscedastic models, such as the ARCH and GARCH models. The author shows that the wild bootstrap usually does not work well when one estimates conditional heteroscedasticity of Engle's ARCH or Bollerslev's GARCH models while the residual bootstrap works without problems. Simulation studies from the application of the proposed bootstrap methods are demonstrated together with the theoretical investigation. 
650 0 |a Probabilities. 
650 0 |a Mathematical models. 
650 0 |a Mathematics. 
650 1 4 |a Probability Theory. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783834809926 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-8348-9778-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)