Cargando…

Numerical solution of Variational Inequalities by Adaptive Finite Elements

Franz-Theo Suttmeier describes a general approach to a posteriori error estimation and adaptive mesh design for finite element models where the solution is subjected to inequality constraints. This is an extension to variational inequalities of the so-called Dual-Weighted-Residual method (DWR method...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Suttmeier, Franz-Theo (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Wiesbaden : Vieweg+Teubner Verlag : Imprint: Vieweg+Teubner Verlag, 2008.
Edición:1st ed. 2008.
Colección:Advances in Numerical Mathematics
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-8348-9546-2
003 DE-He213
005 20220126131330.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783834895462  |9 978-3-8348-9546-2 
024 7 |a 10.1007/978-3-8348-9546-2  |2 doi 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
100 1 |a Suttmeier, Franz-Theo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Numerical solution of Variational Inequalities by Adaptive Finite Elements  |h [electronic resource] /  |c by Franz-Theo Suttmeier. 
250 |a 1st ed. 2008. 
264 1 |a Wiesbaden :  |b Vieweg+Teubner Verlag :  |b Imprint: Vieweg+Teubner Verlag,  |c 2008. 
300 |a X, 161 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Numerical Mathematics 
505 0 |a Models in elasto-plasticity -- The dual-weighted-residual method -- Extensions to stabilised schemes -- Obstacle problem -- Signorini's problem -- Strang's problem -- General concept -- Lagrangian formalism -- Obstacle problem revisited -- Variational inequalities of second kind -- Time-dependent problems -- Applications -- Iterative Algorithms -- Conclusion. 
520 |a Franz-Theo Suttmeier describes a general approach to a posteriori error estimation and adaptive mesh design for finite element models where the solution is subjected to inequality constraints. This is an extension to variational inequalities of the so-called Dual-Weighted-Residual method (DWR method) which is based on a variational formulation of the problem and uses global duality arguments for deriving weighted a posteriori error estimates with respect to arbitrary functionals of the error. In these estimates local residuals of the computed solution are multiplied by sensitivity factors which are obtained from a numerically computed dual solution. The resulting local error indicators are used in a feed-back process for generating economical meshes which are tailored according to the particular goal of the computation. This method is developed here for several model problems. Based on these examples, a general concept is proposed, which provides a systematic way of adaptive error control for problems stated in form of variational inequalities. 
650 0 |a Numerical analysis. 
650 0 |a Mathematics. 
650 1 4 |a Numerical Analysis. 
650 2 4 |a Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783834806642 
830 0 |a Advances in Numerical Mathematics 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-8348-9546-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)