Cargando…

Risk Management in Stochastic Integer Programming With Application to Dispersed Power Generation /

Two-stage stochastic optimization is a useful tool for making optimal decisions under uncertainty. Frederike Neise describes two concepts to handle the classic linear mixed-integer two-stage stochastic optimization problem: The well-known mean-risk modeling, which aims at finding a best solution in...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Neise, Frederike (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Wiesbaden : Vieweg+Teubner Verlag : Imprint: Vieweg+Teubner Verlag, 2008.
Edición:1st ed. 2008.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-8348-9536-3
003 DE-He213
005 20220119202856.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783834895363  |9 978-3-8348-9536-3 
024 7 |a 10.1007/978-3-8348-9536-3  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Neise, Frederike.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Risk Management in Stochastic Integer Programming  |h [electronic resource] :  |b With Application to Dispersed Power Generation /  |c by Frederike Neise. 
250 |a 1st ed. 2008. 
264 1 |a Wiesbaden :  |b Vieweg+Teubner Verlag :  |b Imprint: Vieweg+Teubner Verlag,  |c 2008. 
300 |a VIII, 107 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Risk Measures in Two-Stage Stochastic Programs -- Stochastic Dominance Constraints induced by Mixed-Integer Linear Recourse -- Application: Optimal Operation of a Dispersed Generation System -- Conclusion and Perspective. 
520 |a Two-stage stochastic optimization is a useful tool for making optimal decisions under uncertainty. Frederike Neise describes two concepts to handle the classic linear mixed-integer two-stage stochastic optimization problem: The well-known mean-risk modeling, which aims at finding a best solution in terms of expected costs and risk measures, and stochastic programming with first order dominance constraints that heads towards a decision dominating a given cost benchmark and optimizing an additional objective. For this new class of stochastic optimization problems results on structure and stability are proven. Moreover, the author develops equivalent deterministic formulations of the problem, which are efficiently solved by the presented dual decomposition method based on Lagrangian relaxation and branch-and-bound techniques. Finally, both approaches - mean-risk optimization and dominance constrained programming - are applied to find an optimal operation schedule for a dispersed generation system, a problem from energy industry that is substantially influenced by uncertainty. 
650 0 |a Probabilities. 
650 0 |a Mathematics. 
650 1 4 |a Probability Theory. 
650 2 4 |a Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783834805478 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-8348-9536-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)