Cargando…

Lectures on Algebraic Geometry I Sheaves, Cohomology of Sheaves, and Applications to Riemann Surfaces /

This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Harder, Günter (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Wiesbaden : Vieweg+Teubner Verlag : Imprint: Vieweg+Teubner Verlag, 2008.
Edición:1st ed. 2008.
Colección:Aspects of Mathematics
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-8348-9501-1
003 DE-He213
005 20220116225206.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783834895011  |9 978-3-8348-9501-1 
024 7 |a 10.1007/978-3-8348-9501-1  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Harder, Günter.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Lectures on Algebraic Geometry I  |h [electronic resource] :  |b Sheaves, Cohomology of Sheaves, and Applications to Riemann Surfaces /  |c by Günter Harder. 
250 |a 1st ed. 2008. 
264 1 |a Wiesbaden :  |b Vieweg+Teubner Verlag :  |b Imprint: Vieweg+Teubner Verlag,  |c 2008. 
300 |a VIII, 300 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Aspects of Mathematics 
505 0 |a Categories, products, Projective and Inductive Limits -- Basic Concepts of Homological Algebra -- Sheaves -- Cohomology of Sheaves -- Compact Riemann surfaces and Abelian Varieties. 
520 |a This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern methods have been anticipated by them. 
650 0 |a Algebraic geometry. 
650 0 |a Geometry. 
650 1 4 |a Algebraic Geometry. 
650 2 4 |a Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783528031367 
830 0 |a Aspects of Mathematics 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-8348-9501-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)