Cargando…

Lectures on Algebraic Geometry I Sheaves, Cohomology of Sheaves, and Applications to Riemann Surfaces /

This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Harder, Günter (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2011.
Edición:2nd ed. 2011.
Colección:Aspects of Mathematics ; 35
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-8348-8330-8
003 DE-He213
005 20220118204028.0
007 cr nn 008mamaa
008 140312s2011 gw | s |||| 0|eng d
020 |a 9783834883308  |9 978-3-8348-8330-8 
024 7 |a 10.1007/978-3-8348-8330-8  |2 doi 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a PBM  |2 thema 
082 0 4 |a 516  |2 23 
100 1 |a Harder, Günter.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Lectures on Algebraic Geometry I  |h [electronic resource] :  |b Sheaves, Cohomology of Sheaves, and Applications to Riemann Surfaces /  |c by Günter Harder. 
250 |a 2nd ed. 2011. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2011. 
300 |a XIII, 301 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Aspects of Mathematics ;  |v 35 
520 |a This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern methods have been anticipated by them. 
650 0 |a Geometry. 
650 0 |a Algebra. 
650 1 4 |a Geometry. 
650 2 4 |a Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783834819925 
776 0 8 |i Printed edition:  |z 9783834818447 
830 0 |a Aspects of Mathematics ;  |v 35 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-8348-8330-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)