Cargando…

Data Analytics Models and Algorithms for Intelligent Data Analysis /

This book is a comprehensive introduction to the methods and algorithms and approaches of modern data analytics. It provides a sound mathematical basis, discusses advantages and drawbacks of different approaches, and enables the reader to design and implement data analytics solutions for real-world...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Runkler, Thomas A. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Wiesbaden : Vieweg+Teubner Verlag : Imprint: Vieweg+Teubner Verlag, 2012.
Edición:1st ed. 2012.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-8348-2589-6
003 DE-He213
005 20220113084816.0
007 cr nn 008mamaa
008 120928s2012 gw | s |||| 0|eng d
020 |a 9783834825896  |9 978-3-8348-2589-6 
024 7 |a 10.1007/978-3-8348-2589-6  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Runkler, Thomas A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Data Analytics  |h [electronic resource] :  |b Models and Algorithms for Intelligent Data Analysis /  |c by Thomas A. Runkler. 
250 |a 1st ed. 2012. 
264 1 |a Wiesbaden :  |b Vieweg+Teubner Verlag :  |b Imprint: Vieweg+Teubner Verlag,  |c 2012. 
300 |a X, 137 p. 66 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a This book is a comprehensive introduction to the methods and algorithms and approaches of modern data analytics. It provides a sound mathematical basis, discusses advantages and drawbacks of different approaches, and enables the reader to design and implement data analytics solutions for real-world applications. This book has been used for more than ten years in numerous courses at the Technical University of Munich, in short courses at several other universities, and in tutorials at scientific conferences. Much of the content is based on the results of industrial research and development projects at Siemens. Content Data Analytics - Data and Relations - Data Preprocessing - Data Visualization - Correlation - Regression - Forecasting - Classification - Clustering Target Groups Students of data analytics for engineering, computer science and math  Practitioners working on data analytics projects The Author Thomas Runkler is doing research at Siemens Corporate Technology in Munich and teaching data analytics and machine learning at the Technical University of Munich. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence-Data processing. 
650 0 |a Computer science. 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Data Science. 
650 2 4 |a Computer Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783834825889 
776 0 8 |i Printed edition:  |z 9783834825902 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-8348-2589-6  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)