Cargando…

Trivariate Local Lagrange Interpolation and Macro Elements of Arbitrary Smoothness

Michael A. Matt constructs two trivariate local Lagrange interpolation methods which yield optimal approximation order and Cr macro-elements based on the Alfeld and the Worsey-Farin split of a tetrahedral partition. The first interpolation method is based on cubic C1 splines over type-4 cube partiti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Matt, Michael Andreas (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Wiesbaden : Vieweg+Teubner Verlag : Imprint: Vieweg+Teubner Verlag, 2012.
Edición:1st ed. 2012.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-8348-2384-7
003 DE-He213
005 20220113083725.0
007 cr nn 008mamaa
008 120509s2012 gw | s |||| 0|eng d
020 |a 9783834823847  |9 978-3-8348-2384-7 
024 7 |a 10.1007/978-3-8348-2384-7  |2 doi 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBW  |2 thema 
082 0 4 |a 519  |2 23 
100 1 |a Matt, Michael Andreas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Trivariate Local Lagrange Interpolation and Macro Elements of Arbitrary Smoothness  |h [electronic resource] /  |c by Michael Andreas Matt. 
250 |a 1st ed. 2012. 
264 1 |a Wiesbaden :  |b Vieweg+Teubner Verlag :  |b Imprint: Vieweg+Teubner Verlag,  |c 2012. 
300 |a XVI, 370 p. 87 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Lagrange Interpolation on Type-4 Partitions -- Trivariate Lagrange Interpolation with C² Splines --  Cr Macro-Element over the Clough-Tocher Split -- Cr Macro-Element over the Alfeld Split -- Cr Macro-Element over the Worsey Farin Split. 
520 |a Michael A. Matt constructs two trivariate local Lagrange interpolation methods which yield optimal approximation order and Cr macro-elements based on the Alfeld and the Worsey-Farin split of a tetrahedral partition. The first interpolation method is based on cubic C1 splines over type-4 cube partitions, for which numerical tests are given. The second is the first trivariate Lagrange interpolation method using C2 splines. It is based on arbitrary tetrahedral partitions using splines of degree nine. The author constructs trivariate macro-elements based on the Alfeld split, where each tetrahedron is divided into four subtetrahedra, and the Worsey-Farin split, where each tetrahedron is divided into twelve subtetrahedra, of a tetrahedral partition. In order to obtain the macro-elements based on the Worsey-Farin split minimal determining sets for Cr macro-elements are constructed over the Clough-Tocher split of a triangle, which are more variable than those in the literature. 
650 0 |a Mathematics. 
650 1 4 |a Applications of Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783834823854 
776 0 8 |i Printed edition:  |z 9783834823830 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-8348-2384-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)