Cargando…

Regularity and Substructures of Hom

Regular rings were originally introduced by John von Neumann to clarify aspects of operator algebras ([33], [34], [9]). A continuous geometry is an indecomposable, continuous, complemented modular lattice that is not ?nite-dimensional ([8, page 155], [32, page V]). Von Neumann proved ([32, Theorem 1...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kasch, Friedrich (Autor), Mader, Adolf (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2009.
Edición:1st ed. 2009.
Colección:Frontiers in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-7643-9990-0
003 DE-He213
005 20220113113735.0
007 cr nn 008mamaa
008 100301s2009 sz | s |||| 0|eng d
020 |a 9783764399900  |9 978-3-7643-9990-0 
024 7 |a 10.1007/978-3-7643-9990-0  |2 doi 
050 4 |a QA251.5 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512.46  |2 23 
100 1 |a Kasch, Friedrich.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Regularity and Substructures of Hom  |h [electronic resource] /  |c by Friedrich Kasch, Adolf Mader. 
250 |a 1st ed. 2009. 
264 1 |a Basel :  |b Birkhäuser Basel :  |b Imprint: Birkhäuser,  |c 2009. 
300 |a XV, 164 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Frontiers in Mathematics,  |x 1660-8054 
505 0 |a Notation and Background -- Regular Homomorphisms -- Indecomposable Modules -- Regularity in Modules -- Regularity in HomR(A, M) as a One-sided Module -- Relative Regularity: U-Regularity and Semiregularity -- Reg(A, M) and Other Substructures of Hom -- Regularity in Homomorphism Groups of Abelian Groups -- Regularity in Categories. 
520 |a Regular rings were originally introduced by John von Neumann to clarify aspects of operator algebras ([33], [34], [9]). A continuous geometry is an indecomposable, continuous, complemented modular lattice that is not ?nite-dimensional ([8, page 155], [32, page V]). Von Neumann proved ([32, Theorem 14. 1, page 208], [8, page 162]): Every continuous geometry is isomorphic to the lattice of right ideals of some regular ring. The book of K. R. Goodearl ([14]) gives an extensive account of various types of regular rings and there exist several papers studying modules over regular rings ([27], [31], [15]). In abelian group theory the interest lay in determining those groups whose endomorphism rings were regular or had related properties ([11, Section 112], [29], [30], [12], [13], [24]). An interesting feature was introduced by Brown and McCoy ([4]) who showed that every ring contains a unique largest ideal, all of whose elements are regular elements of the ring. In all these studies it was clear that regularity was intimately related to direct sum decompositions. Ware and Zelmanowitz ([35], [37]) de?ned regularity in modules and studied the structure of regular modules. Nicholson ([26]) generalized the notion and theory of regular modules. In this purely algebraic monograph we study a generalization of regularity to the homomorphism group of two modules which was introduced by the ?rst author ([19]). Little background is needed and the text is accessible to students with an exposure to standard modern algebra. In the following, Risaringwith1,and A, M are right unital R-modules. 
650 0 |a Associative rings. 
650 0 |a Associative algebras. 
650 0 |a Group theory. 
650 0 |a Algebra. 
650 1 4 |a Associative Rings and Algebras. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Algebra. 
700 1 |a Mader, Adolf.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783034600842 
776 0 8 |i Printed edition:  |z 9783764399894 
830 0 |a Frontiers in Mathematics,  |x 1660-8054 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-7643-9990-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)