Cargando…

Stable Homotopy Around the Arf-Kervaire Invariant

Were I to take an iron gun, And ?re it o? towards the sun; I grant 'twould reach its mark at last, But not till many years had passed. But should that bullet change its force, And to the planets take its course, 'Twould never reach the nearest star, Because it is so very far. from FACTS by...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Snaith, Victor P. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2009.
Edición:1st ed. 2009.
Colección:Progress in Mathematics, 273
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-7643-9904-7
003 DE-He213
005 20220126151205.0
007 cr nn 008mamaa
008 100301s2009 sz | s |||| 0|eng d
020 |a 9783764399047  |9 978-3-7643-9904-7 
024 7 |a 10.1007/978-3-7643-9904-7  |2 doi 
050 4 |a QA612-612.8 
072 7 |a PBPD  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBPD  |2 thema 
082 0 4 |a 514.2  |2 23 
100 1 |a Snaith, Victor P.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Stable Homotopy Around the Arf-Kervaire Invariant  |h [electronic resource] /  |c by Victor P. Snaith. 
250 |a 1st ed. 2009. 
264 1 |a Basel :  |b Birkhäuser Basel :  |b Imprint: Birkhäuser,  |c 2009. 
300 |a XIV, 239 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 2296-505X ;  |v 273 
505 0 |a Algebraic Topology Background -- The Arf-Kervaire Invariant via QX -- The Upper Triangular Technology -- A Brief Glimpse of Algebraic K-theory -- The Matrix Corresponding to 1 ? ?3 -- Real Projective Space -- Hurewicz Images, BP-theory and the Arf-Kervaire Invariant -- Upper Triangular Technology and the Arf-Kervaire Invariant -- Futuristic and Contemporary Stable Homotopy. 
520 |a Were I to take an iron gun, And ?re it o? towards the sun; I grant 'twould reach its mark at last, But not till many years had passed. But should that bullet change its force, And to the planets take its course, 'Twould never reach the nearest star, Because it is so very far. from FACTS by Lewis Carroll [55] Let me begin by describing the two purposes which prompted me to write this monograph. This is a book about algebraic topology and more especially about homotopy theory. Since the inception of algebraic topology [217] the study of homotopy classes of continuous maps between spheres has enjoyed a very exc- n n tional, central role. As is well known, for homotopy classes of maps f : S ?? S with n? 1 the sole homotopy invariant is the degree, which characterises the homotopy class completely. The search for a continuous map between spheres of di?erent dimensions and not homotopic to the constant map had to wait for its resolution until the remarkable paper of Heinz Hopf [111]. In retrospect, ?nding 3 an example was rather easy because there is a canonical quotient map from S to 3 1 1 2 theorbitspaceofthe freecircleactionS /S =CP = S . 
650 0 |a Algebraic topology. 
650 1 4 |a Algebraic Topology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783764399344 
776 0 8 |i Printed edition:  |z 9783764399030 
830 0 |a Progress in Mathematics,  |x 2296-505X ;  |v 273 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-7643-9904-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)