Cargando…

Numerical Methods for Structured Matrices and Applications The Georg Heinig Memorial Volume /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Bini, Dario Andrea (Editor ), Mehrmann, Volker (Editor ), Olshevsky, Vadim (Editor ), Tyrtsyhnikov, Eugene (Editor ), van Barel, Marc (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2010.
Edición:1st ed. 2010.
Colección:Operator Theory: Advances and Applications, 199
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • Georg Heinig
  • Georg Heinig (1947-2005) In Memoriam
  • Georg Heinig November 24, 1947 - May 10, 2005 A Personal Memoir and Appreciation
  • to Bezoutians
  • On Matrices that are not Similar to a Toeplitz Matrix and a Family of Polynomials Tewodros Amdeberhan and Georg Heinig
  • Research Contributions
  • A Traub-like Algorithm for Hessenbergquasiseparable- Vandermonde Matrices of Arbitrary Order
  • A Fast Algorithm for Approximate Polynomial GCD Based on Structured Matrix Computations
  • On Inertia of Some Structured Hermitian Matrices
  • Variable-coefficient Toeplitz Matrices with Symbols beyond the Wiener Algebra
  • A Priori Estimates on the Structured Conditioning of Cauchy and Vandermonde Matrices
  • Factorizations of Totally Negative Matrices
  • QR-factorization of Displacement Structured Matrices Using a Rank Structured Matrix Approach
  • Bezoutians Applied to Least Squares Approximation of Rational Functions
  • On the Weyl Matrix Balls Corresponding to the Matricial Carathéodory Problem in Both Nondegenerate and Degenerate Cases
  • On Extremal Problems of Interpolation Theory with Unique Solution
  • O(n) Algorithms for Banded Plus Semiseparable Matrices
  • Unified Nearly Optimal Algorithms for Structured Integer Matrices
  • V-cycle Optimal Convergence for DCT-III Matrices
  • The Ratio Between the Toeplitz and the Unstructured Condition Number
  • A New Algorithm for Finding Positive Eigenvectors for a Class of Nonlinear Operators Associated with M-matrices
  • Hankel Minors and Pade Approximations.