Cargando…

Combinatorial Number Theory and Additive Group Theory

This book collects the material delivered in the 2008 edition of the DocCourse in Combinatorics and Geometry which was devoted to the topic of additive combinatorics. The first two parts, which form the bulk of the volume, contain the two main advanced courses, Additive Group Theory and Non-Unique F...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Geroldinger, Alfred (Autor), Ruzsa, Imre (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2009.
Edición:1st ed. 2009.
Colección:Advanced Courses in Mathematics - CRM Barcelona,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-7643-8962-8
003 DE-He213
005 20220115031104.0
007 cr nn 008mamaa
008 100301s2009 sz | s |||| 0|eng d
020 |a 9783764389628  |9 978-3-7643-8962-8 
024 7 |a 10.1007/978-3-7643-8962-8  |2 doi 
050 4 |a QA297.4 
072 7 |a PBD  |2 bicssc 
072 7 |a MAT008000  |2 bisacsh 
072 7 |a PBD  |2 thema 
082 0 4 |a 511.1  |2 23 
100 1 |a Geroldinger, Alfred.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Combinatorial Number Theory and Additive Group Theory  |h [electronic resource] /  |c by Alfred Geroldinger, Imre Ruzsa. 
250 |a 1st ed. 2009. 
264 1 |a Basel :  |b Birkhäuser Basel :  |b Imprint: Birkhäuser,  |c 2009. 
300 |a XI, 330 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Courses in Mathematics - CRM Barcelona,  |x 2297-0312 
505 0 |a Additive Group Theory and Non-unique Factorizations -- Notation -- Basic concepts of non-unique factorizations -- The Davenport constant and first precise arithmetical results -- The structure of sets of lengths -- Addition theorems and direct zero-sum problems -- Inverse zero-sum problems and arithmetical consequences -- Sumsets and Structure -- Notation -- Cardinality inequalities -- Structure of sets with few sums -- Location and sumsets -- Density -- Measure and topology -- Exercises -- Thematic seminars -- A survey on additive and multiplicative decompositions of sumsets and of shifted sets -- On the detailed structure of sets with small additive property -- The isoperimetric method -- Additive structure of difference sets -- The polynomial method in additive combinatorics -- Problems in additive number theory, III -- Incidences and the spectra of graphs -- Multi-dimensional inverse additive problems. 
520 |a This book collects the material delivered in the 2008 edition of the DocCourse in Combinatorics and Geometry which was devoted to the topic of additive combinatorics. The first two parts, which form the bulk of the volume, contain the two main advanced courses, Additive Group Theory and Non-Unique Factorizations by Alfred Geroldinger, and Sumsets and Structure by Imre Z. Ruzsa. The first part centers on the interaction between non-unique factorization theory and additive group theory. The main objective of factorization theory is a systematic treatment of phenomena related to the non-uniqueness of factorizations in monoids and domains. This part introduces basic concepts of factorization theory such as sets of lengths, and outlines the translation of arithmetical questions in Krull monoids into combinatorial questions on zero-sum sequences over the class group. Using methods from additive group theory such as the theorems of Kneser and of Kemperman-Scherk, classical zero-sum constants are studied, including the Davenport constant and the Erdös-Ginzburg-Ziv constant. Finally these results are applied again to the starting arithmetical problems. The second part is a course on the basics of combinatorial number theory (or additive combinatorics): cardinality inequalities (Plünnecke's graph theoretical method), Freiman's theorem on the structure of sets with a small sumset, inequalities for the Schnirelmann and asymptotic density of sumsets, analogous results for the measure of sumsets of reals, the connection with the Bohr topology. The third part of the volume collects some of the seminars which accompanied the main courses. It contains contributions by C. Elsholtz, G. Freiman, Y. O. Hamidoune, N. Hegyvari, G. Karolyi, M. Nathanson, J. Solymosi and Y. Stanchescu. 
650 0 |a Discrete mathematics. 
650 1 4 |a Discrete Mathematics. 
700 1 |a Ruzsa, Imre.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783764389642 
776 0 8 |i Printed edition:  |z 9783764389611 
830 0 |a Advanced Courses in Mathematics - CRM Barcelona,  |x 2297-0312 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-7643-8962-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)