Cargando…

Quantization and Arithmetic

(12) (4) Let ? be the unique even non-trivial Dirichlet character mod 12, and let ? be the unique (odd) non-trivial Dirichlet character mod 4. Consider on the line the distributions m (12) ? d (x)= ? (m)? x? , even 12 m?Z m (4) d (x)= ? (m)? x? . (1.1) odd 2 m?Z 2 i?x UnderaFouriertransformation,oru...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Unterberger, André (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2008.
Edición:1st ed. 2008.
Colección:Pseudo-Differential Operators, Theory and Applications, 1
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-7643-8791-4
003 DE-He213
005 20220116193737.0
007 cr nn 008mamaa
008 100301s2008 sz | s |||| 0|eng d
020 |a 9783764387914  |9 978-3-7643-8791-4 
024 7 |a 10.1007/978-3-7643-8791-4  |2 doi 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
100 1 |a Unterberger, André.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Quantization and Arithmetic  |h [electronic resource] /  |c by André Unterberger. 
250 |a 1st ed. 2008. 
264 1 |a Basel :  |b Birkhäuser Basel :  |b Imprint: Birkhäuser,  |c 2008. 
300 |a 147 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Pseudo-Differential Operators, Theory and Applications,  |x 2297-0363 ;  |v 1 
505 0 |a Weyl Calculus and Arithmetic -- Quantization -- Quantization and Modular Forms -- Back to the Weyl Calculus. 
520 |a (12) (4) Let ? be the unique even non-trivial Dirichlet character mod 12, and let ? be the unique (odd) non-trivial Dirichlet character mod 4. Consider on the line the distributions m (12) ? d (x)= ? (m)? x? , even 12 m?Z m (4) d (x)= ? (m)? x? . (1.1) odd 2 m?Z 2 i?x UnderaFouriertransformation,orundermultiplicationbythefunctionx ? e , the?rst(resp. second)ofthesedistributionsonlyundergoesmultiplicationbysome 24th (resp. 8th) root of unity. Then, consider the metaplectic representation Met, 2 a unitary representation in L (R) of the metaplectic group G, the twofold cover of the group G = SL(2,R), the de?nition of which will be recalled in Section 2: it extends as a representation in the spaceS (R) of tempered distributions. From what has just been said, if g ˜ is a point of G lying above g? G,andif d = d even g ˜ ?1 or d , the distribution d =Met(g˜ )d only depends on the class of g in the odd homogeneousspace?\G=SL(2,Z)\G,uptomultiplicationbysomephasefactor, by which we mean any complex number of absolute value 1 depending only on g ˜. On the other hand, a function u?S(R) is perfectly characterized by its scalar g ˜ productsagainstthedistributionsd ,sinceonehasforsomeappropriateconstants C , C the identities 0 1 g ˜ 2 2 | d ,u | dg = C u if u is even, 2 0 even L (R) ?\G. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Number theory. 
650 0 |a Mathematical physics. 
650 0 |a Operator theory. 
650 1 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Number Theory. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Operator Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783764398378 
776 0 8 |i Printed edition:  |z 9783764387907 
830 0 |a Pseudo-Differential Operators, Theory and Applications,  |x 2297-0363 ;  |v 1 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-7643-8791-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)