Cargando…

Metric Foliations and Curvature

In the past three or four decades, there has been increasing realization that metric foliations play a key role in understanding the structure of Riemannian manifolds, particularly those with positive or nonnegative sectional curvature. In fact, all known such spaces are constructed from only a repr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Gromoll, Detlef (Autor), Walschap, Gerard (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2009.
Edición:1st ed. 2009.
Colección:Progress in Mathematics, 268
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-7643-8715-0
003 DE-He213
005 20220118084401.0
007 cr nn 008mamaa
008 100301s2009 sz | s |||| 0|eng d
020 |a 9783764387150  |9 978-3-7643-8715-0 
024 7 |a 10.1007/978-3-7643-8715-0  |2 doi 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
072 7 |a PBMP  |2 thema 
082 0 4 |a 516.36  |2 23 
100 1 |a Gromoll, Detlef.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Metric Foliations and Curvature  |h [electronic resource] /  |c by Detlef Gromoll, Gerard Walschap. 
250 |a 1st ed. 2009. 
264 1 |a Basel :  |b Birkhäuser Basel :  |b Imprint: Birkhäuser,  |c 2009. 
300 |a VIII, 176 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 2296-505X ;  |v 268 
505 0 |a Submersions, Foliations, and Metrics -- Basic Constructions and Examples -- Open Manifolds of Nonnegative Curvature -- Metric Foliations in Space Forms. 
520 |a In the past three or four decades, there has been increasing realization that metric foliations play a key role in understanding the structure of Riemannian manifolds, particularly those with positive or nonnegative sectional curvature. In fact, all known such spaces are constructed from only a representative handful by means of metric fibrations or deformations thereof. This text is an attempt to document some of these constructions, many of which have only appeared in journal form. The emphasis here is less on the fibration itself and more on how to use it to either construct or understand a metric with curvature of fixed sign on a given space. 
650 0 |a Geometry, Differential. 
650 1 4 |a Differential Geometry. 
700 1 |a Walschap, Gerard.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783764398057 
776 0 8 |i Printed edition:  |z 9783764387143 
830 0 |a Progress in Mathematics,  |x 2296-505X ;  |v 268 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-7643-8715-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)