Cargando…

Optimal Domain and Integral Extension of Operators Acting in Function Spaces /

Operator theory and functional analysis have a long tradition, initially being guided by problems from mathematical physics and applied mathematics. Much of the work in Banach spaces from the 1930s onwards resulted from investigating how much real (and complex) variable function theory might be exte...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Okada, S. (Autor), Ricker, Werner J. (Autor), Sánchez Pérez, Enrique A. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2008.
Edición:1st ed. 2008.
Colección:Operator Theory: Advances and Applications, 180
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-7643-8648-1
003 DE-He213
005 20220110193741.0
007 cr nn 008mamaa
008 100301s2008 sz | s |||| 0|eng d
020 |a 9783764386481  |9 978-3-7643-8648-1 
024 7 |a 10.1007/978-3-7643-8648-1  |2 doi 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515  |2 23 
100 1 |a Okada, S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Optimal Domain and Integral Extension of Operators  |h [electronic resource] :  |b Acting in Function Spaces /  |c by S. Okada, Werner J. Ricker, Enrique A. Sánchez Pérez. 
250 |a 1st ed. 2008. 
264 1 |a Basel :  |b Birkhäuser Basel :  |b Imprint: Birkhäuser,  |c 2008. 
300 |a XII, 400 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Operator Theory: Advances and Applications,  |x 2296-4878 ;  |v 180 
505 0 |a Quasi-Banach Function Spaces -- Vector Measures and Integration Operators -- Optimal Domains and Integral Extensions -- p-th Power Factorable Operators -- Factorization of p-th Power Factorable Operators through Lq-spaces -- Operators from Classical Harmonic Analysis. 
520 |a Operator theory and functional analysis have a long tradition, initially being guided by problems from mathematical physics and applied mathematics. Much of the work in Banach spaces from the 1930s onwards resulted from investigating how much real (and complex) variable function theory might be extended to fu- tions taking values in (function) spaces or operators acting in them. Many of the ?rst ideas in geometry, basis theory and the isomorphic theory of Banach spaces have vector measure-theoretic origins and can be credited (amongst others) to N. Dunford, I.M. Gelfand, B.J. Pettis and R.S. Phillips. Somewhat later came the penetratingcontributionsofA.Grothendieck,whichhavepervadedandin?uenced theshapeoffunctionalanalysisandthetheoryofvectormeasures/integrationever since. Today, each of the areas of functional analysis/operator theory, Banach spaces, and vector measures/integration is a strong discipline in its own right. However, it is not always made clear that these areas grew up together as cousins and that they had, and still have, enormous in?uences on one another. One of the aims of this monograph is to reinforce and make transparent precisely this important point. 
650 0 |a Mathematical analysis. 
650 0 |a Operator theory. 
650 1 4 |a Analysis. 
650 2 4 |a Operator Theory. 
700 1 |a Ricker, Werner J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Sánchez Pérez, Enrique A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783764394790 
776 0 8 |i Printed edition:  |z 9783764386474 
830 0 |a Operator Theory: Advances and Applications,  |x 2296-4878 ;  |v 180 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-7643-8648-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)