Cargando…

Completeness Theory for Propositional Logics

Completeness is one of the most important notions in logic and the foundations of mathematics. Many variants of the notion have been de?ned in literature. We shallconcentrateonthesevariants,andaspects,of completenesswhicharede?ned in propositional logic. Completeness means the possibility of getting...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Pogorzelski, Witold A. (Autor), Wojtylak, Piotr (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2008.
Edición:1st ed. 2008.
Colección:Studies in Universal Logic,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-7643-8518-7
003 DE-He213
005 20220120010632.0
007 cr nn 008mamaa
008 100301s2008 sz | s |||| 0|eng d
020 |a 9783764385187  |9 978-3-7643-8518-7 
024 7 |a 10.1007/978-3-7643-8518-7  |2 doi 
050 4 |a QA8.9-10.3 
072 7 |a PBCD  |2 bicssc 
072 7 |a PBC  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
072 7 |a PBCD  |2 thema 
072 7 |a PBC  |2 thema 
082 0 4 |a 511.3  |2 23 
100 1 |a Pogorzelski, Witold A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Completeness Theory for Propositional Logics  |h [electronic resource] /  |c by Witold A. Pogorzelski, Piotr Wojtylak. 
250 |a 1st ed. 2008. 
264 1 |a Basel :  |b Birkhäuser Basel :  |b Imprint: Birkhäuser,  |c 2008. 
300 |a VIII, 178 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Universal Logic,  |x 2297-0290 
505 0 |a Introduction -- 1. Basic notions: Propositional languages -- Abstract algebras -- Preliminary lattice-theoretical notions -- Propositional logics -- Brief exposition of the most important propositional logics -- 2. Semantic methods in propositional logic: Preordered sets -- Preordered algebras -- Logical matrices -- Adequacy -- Propositional logic and lattice theory -- 3. Completeness of propositional logic: Generalized completeness -- Post-completeness -- The problem of uniqueness of Lindenbaum extensions -- Some related concepts -- 4. Characterization of propositional connectives: Cn-definitions -- The system (D) -- Variants -- The system (I) -- Classical logic -- Appendix: The fundamental metatheorem for the classical propositional logic -- A proof system for the classical logic. 
520 |a Completeness is one of the most important notions in logic and the foundations of mathematics. Many variants of the notion have been de?ned in literature. We shallconcentrateonthesevariants,andaspects,of completenesswhicharede?ned in propositional logic. Completeness means the possibility of getting all correct and reliable sc- mata of inference by use of logical methods. The word 'all', seemingly neutral, is here a crucial point of distinction. Assuming the de?nition as given by E. Post we get, say, a global notion of completeness in which the reliability refers only to syntactic means of logic and outside the correct schemata of inference there are only inconsistent ones. It is impossible, however, to leave aside local aspects of the notion when we want to make it relative to some given or invented notion of truth. Completeness understood in this sense is the adequacy of logic in relation to some semantics, and the change of the logic is accompanied by the change of its semantics. Such completeness was e?ectively used by J. ?ukasiewicz and investigated in general terms by A. Tarski and A. Lindenbaum, which gave strong foundations for research in logic and, in particular, for the notion of consequence operation determined by a logical system. The choice of logical means, by use of which we intend to represent logical inferences, is also important. Most of the de?nitions and results in completeness theory were originally developed in terms of propositional logic. Propositional formal systems ?nd many applications in logic and theoretical computer science. 
650 0 |a Mathematical logic. 
650 1 4 |a Mathematical Logic and Foundations. 
700 1 |a Wojtylak, Piotr.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783764392376 
776 0 8 |i Printed edition:  |z 9783764385170 
830 0 |a Studies in Universal Logic,  |x 2297-0290 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-7643-8518-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)