Cargando…

Topological and Bivariant K-Theory

Topological K-theory is one of the most important invariants for noncommutative algebras equipped with a suitable topology or bornology. Bott periodicity, homotopy invariance, and various long exact sequences distinguish it from algebraic K-theory. We describe a bivariant K-theory for bornological a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Cuntz, Joachim (Autor), Rosenberg, Jonathan M. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2007.
Edición:1st ed. 2007.
Colección:Oberwolfach Seminars, 36
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-7643-8399-2
003 DE-He213
005 20220113081651.0
007 cr nn 008mamaa
008 100301s2007 sz | s |||| 0|eng d
020 |a 9783764383992  |9 978-3-7643-8399-2 
024 7 |a 10.1007/978-3-7643-8399-2  |2 doi 
050 4 |a QA612.33 
072 7 |a PBPD  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBPD  |2 thema 
082 0 4 |a 512.66  |2 23 
100 1 |a Cuntz, Joachim.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Topological and Bivariant K-Theory  |h [electronic resource] /  |c by Joachim Cuntz, Jonathan M. Rosenberg. 
250 |a 1st ed. 2007. 
264 1 |a Basel :  |b Birkhäuser Basel :  |b Imprint: Birkhäuser,  |c 2007. 
300 |a XII, 262 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Oberwolfach Seminars,  |x 2296-5041 ;  |v 36 
505 0 |a The elementary algebra of K-theory -- Functional calculus and topological K-theory -- Homotopy invariance of stabilised algebraic K-theory -- Bott periodicity -- The K-theory of crossed products -- Towards bivariant K-theory: how to classify extensions -- Bivariant K-theory for bornological algebras -- A survey of bivariant K-theories -- Algebras of continuous trace, twisted K-theory -- Crossed products by ? and Connes' Thom Isomorphism -- Applications to physics -- Some connections with index theory -- Localisation of triangulated categories. 
520 |a Topological K-theory is one of the most important invariants for noncommutative algebras equipped with a suitable topology or bornology. Bott periodicity, homotopy invariance, and various long exact sequences distinguish it from algebraic K-theory. We describe a bivariant K-theory for bornological algebras, which provides a vast generalization of topological K-theory. In addition, we discuss other approaches to bivariant K-theories for operator algebras. As applications, we study K-theory of crossed products, the Baum-Connes assembly map, twisted K-theory with some of its applications, and some variants of the Atiyah-Singer Index Theorem. 
650 0 |a K-theory. 
650 0 |a Topology. 
650 1 4 |a K-Theory. 
650 2 4 |a Topology. 
700 1 |a Rosenberg, Jonathan M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783764392024 
776 0 8 |i Printed edition:  |z 9783764383985 
830 0 |a Oberwolfach Seminars,  |x 2296-5041 ;  |v 36 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-7643-8399-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)