|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-7643-8399-2 |
003 |
DE-He213 |
005 |
20220113081651.0 |
007 |
cr nn 008mamaa |
008 |
100301s2007 sz | s |||| 0|eng d |
020 |
|
|
|a 9783764383992
|9 978-3-7643-8399-2
|
024 |
7 |
|
|a 10.1007/978-3-7643-8399-2
|2 doi
|
050 |
|
4 |
|a QA612.33
|
072 |
|
7 |
|a PBPD
|2 bicssc
|
072 |
|
7 |
|a MAT002010
|2 bisacsh
|
072 |
|
7 |
|a PBPD
|2 thema
|
082 |
0 |
4 |
|a 512.66
|2 23
|
100 |
1 |
|
|a Cuntz, Joachim.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Topological and Bivariant K-Theory
|h [electronic resource] /
|c by Joachim Cuntz, Jonathan M. Rosenberg.
|
250 |
|
|
|a 1st ed. 2007.
|
264 |
|
1 |
|a Basel :
|b Birkhäuser Basel :
|b Imprint: Birkhäuser,
|c 2007.
|
300 |
|
|
|a XII, 262 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Oberwolfach Seminars,
|x 2296-5041 ;
|v 36
|
505 |
0 |
|
|a The elementary algebra of K-theory -- Functional calculus and topological K-theory -- Homotopy invariance of stabilised algebraic K-theory -- Bott periodicity -- The K-theory of crossed products -- Towards bivariant K-theory: how to classify extensions -- Bivariant K-theory for bornological algebras -- A survey of bivariant K-theories -- Algebras of continuous trace, twisted K-theory -- Crossed products by ? and Connes' Thom Isomorphism -- Applications to physics -- Some connections with index theory -- Localisation of triangulated categories.
|
520 |
|
|
|a Topological K-theory is one of the most important invariants for noncommutative algebras equipped with a suitable topology or bornology. Bott periodicity, homotopy invariance, and various long exact sequences distinguish it from algebraic K-theory. We describe a bivariant K-theory for bornological algebras, which provides a vast generalization of topological K-theory. In addition, we discuss other approaches to bivariant K-theories for operator algebras. As applications, we study K-theory of crossed products, the Baum-Connes assembly map, twisted K-theory with some of its applications, and some variants of the Atiyah-Singer Index Theorem.
|
650 |
|
0 |
|a K-theory.
|
650 |
|
0 |
|a Topology.
|
650 |
1 |
4 |
|a K-Theory.
|
650 |
2 |
4 |
|a Topology.
|
700 |
1 |
|
|a Rosenberg, Jonathan M.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783764392024
|
776 |
0 |
8 |
|i Printed edition:
|z 9783764383985
|
830 |
|
0 |
|a Oberwolfach Seminars,
|x 2296-5041 ;
|v 36
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-7643-8399-2
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-SXMS
|
950 |
|
|
|a Mathematics and Statistics (SpringerNature-11649)
|
950 |
|
|
|a Mathematics and Statistics (R0) (SpringerNature-43713)
|