Cargando…

Tropical Algebraic Geometry

Tropical geometry is algebraic geometry over the semifield of tropical numbers, i.e., the real numbers and negative infinity enhanced with the (max,+)-arithmetics. Geometrically, tropical varieties are much simpler than their classical counterparts. Yet they carry information about complex and real...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Itenberg, Ilia (Autor), Mikhalkin, Grigory (Autor), Shustin, Eugenii I. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2007.
Edición:1st ed. 2007.
Colección:Oberwolfach Seminars, 35
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-7643-8310-7
003 DE-He213
005 20220115030023.0
007 cr nn 008mamaa
008 100301s2007 sz | s |||| 0|eng d
020 |a 9783764383107  |9 978-3-7643-8310-7 
024 7 |a 10.1007/978-3-7643-8310-7  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Itenberg, Ilia.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Tropical Algebraic Geometry  |h [electronic resource] /  |c by Ilia Itenberg, Grigory Mikhalkin, Eugenii I. Shustin. 
250 |a 1st ed. 2007. 
264 1 |a Basel :  |b Birkhäuser Basel :  |b Imprint: Birkhäuser,  |c 2007. 
300 |a VIII, 104 p. 30 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Oberwolfach Seminars,  |x 2296-5041 ;  |v 35 
505 0 |a Preface -- 1. Introduction to tropical geometry - Images under the logarithm - Amoebas - Tropical curves -- 2. Patchworking of algebraic varieties - Toric geometry - Viro's patchworking method - Patchworking of singular algebraic surfaces - Tropicalization in the enumeration of nodal curves -- 3. Applications of tropical geometry to enumerative geometry - Tropical hypersurfaces - Correspondence theorem - Welschinger invariants -- Bibliography. 
520 |a Tropical geometry is algebraic geometry over the semifield of tropical numbers, i.e., the real numbers and negative infinity enhanced with the (max,+)-arithmetics. Geometrically, tropical varieties are much simpler than their classical counterparts. Yet they carry information about complex and real varieties. These notes present an introduction to tropical geometry and contain some applications of this rapidly developing and attractive subject. It consists of three chapters which complete each other and give a possibility for non-specialists to make the first steps in the subject which is not yet well represented in the literature. The intended audience is graduate, post-graduate, and Ph.D. students as well as established researchers in mathematics. 
650 0 |a Algebraic geometry. 
650 1 4 |a Algebraic Geometry. 
700 1 |a Mikhalkin, Grigory.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Shustin, Eugenii I.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783764391966 
776 0 8 |i Printed edition:  |z 9783764383091 
830 0 |a Oberwolfach Seminars,  |x 2296-5041 ;  |v 35 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-7643-8310-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)