|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-7643-7698-7 |
003 |
DE-He213 |
005 |
20220110192845.0 |
007 |
cr nn 008mamaa |
008 |
100301s2006 sz | s |||| 0|eng d |
020 |
|
|
|a 9783764376987
|9 978-3-7643-7698-7
|
024 |
7 |
|
|a 10.1007/3-7643-7698-8
|2 doi
|
050 |
|
4 |
|a QA329-329.9
|
072 |
|
7 |
|a PBKF
|2 bicssc
|
072 |
|
7 |
|a MAT037000
|2 bisacsh
|
072 |
|
7 |
|a PBKF
|2 thema
|
082 |
0 |
4 |
|a 515.724
|2 23
|
100 |
1 |
|
|a Haase, Markus.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
4 |
|a The Functional Calculus for Sectorial Operators
|h [electronic resource] /
|c by Markus Haase.
|
250 |
|
|
|a 1st ed. 2006.
|
264 |
|
1 |
|a Basel :
|b Birkhäuser Basel :
|b Imprint: Birkhäuser,
|c 2006.
|
300 |
|
|
|a XIV, 394 p. 8 illus.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Operator Theory: Advances and Applications,
|x 2296-4878 ;
|v 169
|
505 |
0 |
|
|a Axiomatics for Functional Calculi -- The Functional Calculus for Sectorial Operators -- Fractional Powers and Semigroups -- Strip-type Operators and the Logarithm -- The Boundedness of the H?-Calculus -- Interpolation Spaces -- The Functional Calculus on Hilbert Spaces -- Differential Operators -- Mixed Topics.
|
520 |
|
|
|a The present monograph deals with the functional calculus for unbounded operators in general and for sectorial operators in particular. Sectorial operators abound in the theory of evolution equations, especially those of parabolic type. They satisfy a certain resolvent condition that leads to a holomorphic functional calculus based on Cauchy-type integrals. Via an abstract extension procedure, this elementary functional calculus is then extended to a large class of (even meromorphic) functions. With this functional calculus at hand, the book elegantly covers holomorphic semigroups, fractional powers, and logarithms. Special attention is given to perturbation results and the connection with the theory of interpolation spaces. A chapter is devoted to the exciting interplay between numerical range conditions, similarity problems and functional calculus on Hilbert spaces. Two chapters describe applications, for example to elliptic operators, to numerical approximations of parabolic equations, and to the maximal regularity problem. This book is the first systematic account of a subject matter which lies in the intersection of operator theory, evolution equations, and harmonic analysis. It is an original and comprehensive exposition of the theory as a whole. Written in a clear style and optimally organised, it will prove useful for the advanced graduate as well as for the experienced researcher.
|
650 |
|
0 |
|a Operator theory.
|
650 |
|
0 |
|a Functional analysis.
|
650 |
1 |
4 |
|a Operator Theory.
|
650 |
2 |
4 |
|a Functional Analysis.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783764391409
|
776 |
0 |
8 |
|i Printed edition:
|z 9783764376970
|
830 |
|
0 |
|a Operator Theory: Advances and Applications,
|x 2296-4878 ;
|v 169
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/3-7643-7698-8
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-SXMS
|
950 |
|
|
|a Mathematics and Statistics (SpringerNature-11649)
|
950 |
|
|
|a Mathematics and Statistics (R0) (SpringerNature-43713)
|