Cargando…

The Monodromy Group

In singularity theory and algebraic geometry the monodromy group is embodied in the Picard-Lefschetz formula and the Picard-Fuchs equations. It has applications in the weakened 16th Hilbert problem and in mixed Hodge structures. In the theory of systems of linear differential equations one has the R...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zoladek, Henryk (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2006.
Edición:1st ed. 2006.
Colección:Monografie Matematyczne, 67
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-7643-7536-2
003 DE-He213
005 20220113095602.0
007 cr nn 008mamaa
008 100301s2006 sz | s |||| 0|eng d
020 |a 9783764375362  |9 978-3-7643-7536-2 
024 7 |a 10.1007/3-7643-7536-1  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Zoladek, Henryk.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Monodromy Group  |h [electronic resource] /  |c by Henryk Zoladek. 
250 |a 1st ed. 2006. 
264 1 |a Basel :  |b Birkhäuser Basel :  |b Imprint: Birkhäuser,  |c 2006. 
300 |a XI, 583 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Monografie Matematyczne,  |x 2297-0274 ;  |v 67 
505 0 |a Analytic Functions and Morse Theory -- Normal Forms of Functions -- Algebraic Topology of Manifolds -- Topology and Monodromy of Functions -- Integrals along Vanishing Cycles -- Vector Fields and Abelian Integrals -- Hodge Structures and Period Map -- Linear Differential Systems -- Holomorphic Foliations. Local Theory -- Holomorphic Foliations. Global Aspects -- The Galois Theory -- Hypergeometric Functions. 
520 |a In singularity theory and algebraic geometry the monodromy group is embodied in the Picard-Lefschetz formula and the Picard-Fuchs equations. It has applications in the weakened 16th Hilbert problem and in mixed Hodge structures. In the theory of systems of linear differential equations one has the Riemann-Hilbert problem, the Stokes phenomena and the hypergeometric functions with their multidimensional generalizations. In the theory of homomorphic foliations there appear the Ecalle-Voronin-Martinet-Ramis moduli. On the other hand, there is a deep connection of monodromy theory with Galois theory of differential equations and algebraic functions. All this is presented in this book, underlining the unifying role of the monodromy group. The material is addressed to a wide audience, ranging from specialists in the theory of ordinary differential equations to algebraic geometers. The book contains a lot of results which are usually spread in many sources. Readers can quickly get introduced to modern and vital mathematical theories, such as singularity theory, analytic theory of ordinary differential equations, holomorphic foliations, Galois theory, and parts of algebraic geometry, without searching in vast literature. 
650 0 |a Algebra. 
650 0 |a Algebraic topology. 
650 0 |a Functions of complex variables. 
650 0 |a Differential equations. 
650 0 |a Special functions. 
650 1 4 |a Algebra. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Differential Equations. 
650 2 4 |a Special Functions. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783764391126 
776 0 8 |i Printed edition:  |z 9783764375355 
830 0 |a Monografie Matematyczne,  |x 2297-0274 ;  |v 67 
856 4 0 |u https://doi.uam.elogim.com/10.1007/3-7643-7536-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)