Cargando…

Classical Geometries in Modern Contexts Geometry of Real Inner Product Spaces /

This book is based on real inner product spaces X of arbitrary (finite or infinite) dimension greater than or equal to 2. With natural properties of (general) translations and general distances of X, euclidean and hyperbolic geometries are characterized. For these spaces X also the sphere geometries...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Benz, Walter (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2005.
Edición:1st ed. 2005.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-7643-7432-7
003 DE-He213
005 20220114130836.0
007 cr nn 008mamaa
008 100301s2005 sz | s |||| 0|eng d
020 |a 9783764374327  |9 978-3-7643-7432-7 
024 7 |a 10.1007/3-7643-7432-2  |2 doi 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a PBM  |2 thema 
082 0 4 |a 516  |2 23 
100 1 |a Benz, Walter.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Classical Geometries in Modern Contexts  |h [electronic resource] :  |b Geometry of Real Inner Product Spaces /  |c by Walter Benz. 
250 |a 1st ed. 2005. 
264 1 |a Basel :  |b Birkhäuser Basel :  |b Imprint: Birkhäuser,  |c 2005. 
300 |a XII, 244 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Translation Groups -- Euclidean and Hyperbolic Geometry -- Sphere Geometries of Möbius and Lie -- Lorentz Transformations. 
520 |a This book is based on real inner product spaces X of arbitrary (finite or infinite) dimension greater than or equal to 2. With natural properties of (general) translations and general distances of X, euclidean and hyperbolic geometries are characterized. For these spaces X also the sphere geometries of Möbius and Lie are studied (besides euclidean and hyperbolic geometry), as well as geometries where Lorentz transformations play the key role. The geometrical notions of this book are based on general spaces X as described. This implies that also mathematicians who have not so far been especially interested in geometry may study and understand great ideas of classical geometries in modern and general contexts. Proofs of newer theorems, characterizing isometries and Lorentz transformations under mild hypotheses are included, like for instance infinite dimensional versions of famous theorems of A.D. Alexandrov on Lorentz transformations. A real benefit is the dimension-free approach to important geometrical theories. Only prerequisites are basic linear algebra and basic 2- and 3-dimensional real geometry. 
650 0 |a Geometry. 
650 0 |a Mathematical physics. 
650 1 4 |a Geometry. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783764390945 
776 0 8 |i Printed edition:  |z 9783764373719 
856 4 0 |u https://doi.uam.elogim.com/10.1007/3-7643-7432-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)