Cargando…

Invariant Probabilities of Markov-Feller Operators and Their Supports

In this book invariant probabilities for a large class of discrete-time homogeneous Markov processes known as Feller processes are discussed. These Feller processes appear in the study of iterated function systems with probabilities, convolution operators, certain time series, etc. Rather than deali...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zaharopol, Radu (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2005.
Edición:1st ed. 2005.
Colección:Frontiers in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-7643-7344-3
003 DE-He213
005 20220114011030.0
007 cr nn 008mamaa
008 131217s2005 sz | s |||| 0|eng d
020 |a 9783764373443  |9 978-3-7643-7344-3 
024 7 |a 10.1007/b98076  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Zaharopol, Radu.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Invariant Probabilities of Markov-Feller Operators and Their Supports  |h [electronic resource] /  |c by Radu Zaharopol. 
250 |a 1st ed. 2005. 
264 1 |a Basel :  |b Birkhäuser Basel :  |b Imprint: Birkhäuser,  |c 2005. 
300 |a XIII, 113 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Frontiers in Mathematics,  |x 1660-8054 
505 0 |a Introduction -- 1. Preliminaries on Markov-Feller Operators -- 2. The KBBY Decomposition -- 3. Unique Ergodicity -- 4. Equicontinuity -- Bibliography -- Index. 
520 |a In this book invariant probabilities for a large class of discrete-time homogeneous Markov processes known as Feller processes are discussed. These Feller processes appear in the study of iterated function systems with probabilities, convolution operators, certain time series, etc. Rather than dealing with the processes, the transition probabilities and the operators associated with these processes are studied. Main features: - an ergodic decomposition which is a "reference system" for dealing with ergodic measures - "formulas" for the supports of invariant probability measures, some of which can be used to obtain algorithms for the graphical display of these supports - helps to gain a better understanding of the structure of Markov-Feller operators, and, implicitly, of the discrete-time homogeneous Feller processes - special efforts to attract newcomers to the theory of Markov processes in general, and to the topics covered in particular - most of the results are new and deal with topics of intense research interest. 
650 0 |a Probabilities. 
650 0 |a Geometry, Differential. 
650 1 4 |a Probability Theory. 
650 2 4 |a Differential Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783764390303 
776 0 8 |i Printed edition:  |z 9783764371340 
830 0 |a Frontiers in Mathematics,  |x 1660-8054 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b98076  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)