Cargando…

Music Similarity and Retrieval An Introduction to Audio- and Web-based Strategies /

This book provides a summary of the manifold audio- and web-based approaches to music information retrieval (MIR) research. In contrast to other books dealing solely with music signal processing, it addresses additional cultural and listener-centric aspects and thus provides a more holistic view. Co...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Knees, Peter (Autor), Schedl, Markus (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:The Information Retrieval Series, 36
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-662-49722-7
003 DE-He213
005 20220112223717.0
007 cr nn 008mamaa
008 160528s2016 gw | s |||| 0|eng d
020 |a 9783662497227  |9 978-3-662-49722-7 
024 7 |a 10.1007/978-3-662-49722-7  |2 doi 
050 4 |a QA75.5-76.95 
072 7 |a UNH  |2 bicssc 
072 7 |a UND  |2 bicssc 
072 7 |a COM030000  |2 bisacsh 
072 7 |a UNH  |2 thema 
072 7 |a UND  |2 thema 
082 0 4 |a 025.04  |2 23 
100 1 |a Knees, Peter.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Music Similarity and Retrieval  |h [electronic resource] :  |b An Introduction to Audio- and Web-based Strategies /  |c by Peter Knees, Markus Schedl. 
250 |a 1st ed. 2016. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2016. 
300 |a XX, 299 p. 82 illus., 47 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a The Information Retrieval Series,  |x 2730-6836 ;  |v 36 
505 0 |a 1 Introduction to Music Similarity and Retrieval -- 2 Basic Methods of Audio Signal Processing -- 3 Audio Feature Extraction for Similarity Measurement -- 4 Semantic Labeling of Music -- 5 Contextual Music Meta-data: Comparison and Sources -- 6 Contextual Music Similarity, Indexing, and Retrieval -- 7 Listener-centered Data Sources and Aspects: Traces of Music Interaction -- 8 Collaborative Music Similarity and Recommendation -- 9 Applications -- 10 Grand Challenges and Outlook -- Appendix. 
520 |a This book provides a summary of the manifold audio- and web-based approaches to music information retrieval (MIR) research. In contrast to other books dealing solely with music signal processing, it addresses additional cultural and listener-centric aspects and thus provides a more holistic view. Consequently, the text includes methods operating on features extracted directly from the audio signal, as well as methods operating on features extracted from contextual information, either the cultural context of music as represented on the web or the user and usage context of music. Following the prevalent document-centered paradigm of information retrieval, the book addresses models of music similarity that extract computational features to describe an entity that represents music on any level (e.g., song, album, or artist), and methods to calculate the similarity between them. While this perspective and the representations discussed cannot describe all musical dimensions, they enable us to effectively find music of similar qualities by providing abstract summarizations of musical artifacts from different modalities. The text at hand provides a comprehensive and accessible introduction to the topics of music search, retrieval, and recommendation from an academic perspective. It will not only allow those new to the field to quickly access MIR from an information retrieval point of view but also raise awareness for the developments of the music domain within the greater IR community. In this regard, Part I deals with content-based MIR, in particular the extraction of features from the music signal and similarity calculation for content-based retrieval. Part II subsequently addresses MIR methods that make use of the digitally accessible cultural context of music. Part III addresses methods of collaborative filtering and user-aware and multi-modal retrieval, while Part IV explores current and future applications of music retrieval and recommendation.>. 
650 0 |a Information storage and retrieval systems. 
650 0 |a Digital humanities. 
650 0 |a Signal processing. 
650 0 |a Quantitative research. 
650 1 4 |a Information Storage and Retrieval. 
650 2 4 |a Digital Humanities. 
650 2 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Data Analysis and Big Data. 
700 1 |a Schedl, Markus.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783662497203 
776 0 8 |i Printed edition:  |z 9783662497210 
776 0 8 |i Printed edition:  |z 9783662570319 
830 0 |a The Information Retrieval Series,  |x 2730-6836 ;  |v 36 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-662-49722-7  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)