Cargando…

Topics in Grammatical Inference

This book explains advanced theoretical and application-related issues in grammatical inference, a research area inside the inductive inference paradigm for machine learning. The first three chapters of the book deal with issues regarding theoretical learning frameworks; the next four chapters focus...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Heinz, Jeffrey (Editor ), Sempere, José M. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-662-48395-4
003 DE-He213
005 20220117192046.0
007 cr nn 008mamaa
008 160504s2016 gw | s |||| 0|eng d
020 |a 9783662483954  |9 978-3-662-48395-4 
024 7 |a 10.1007/978-3-662-48395-4  |2 doi 
050 4 |a QA75.5-76.95 
072 7 |a UYA  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a UYA  |2 thema 
082 0 4 |a 004.0151  |2 23 
245 1 0 |a Topics in Grammatical Inference  |h [electronic resource] /  |c edited by Jeffrey Heinz, José M. Sempere. 
250 |a 1st ed. 2016. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2016. 
300 |a XVII, 247 p. 56 illus., 7 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Gold-Style Learning Theory -- Efficiency in the Identification in the Limit Learning Paradigm -- Learning Grammars and Automata with Queries -- On the Inference of Finite State Automata from Positive and Negative Data -- Learning Probability Distributions Generated by Finite-State Machines -- Distributional Learning of Context-Free and Multiple -- Context-Free Grammars -- Learning Tree Languages -- Learning the Language of Biological Sequences. 
520 |a This book explains advanced theoretical and application-related issues in grammatical inference, a research area inside the inductive inference paradigm for machine learning. The first three chapters of the book deal with issues regarding theoretical learning frameworks; the next four chapters focus on the main classes of formal languages according to Chomsky's hierarchy, in particular regular and context-free languages; and the final chapter addresses the processing of biosequences. The topics chosen are of foundational interest with relatively mature and established results, algorithms and conclusions. The book will be of value to researchers and graduate students in areas such as theoretical computer science, machine learning, computational linguistics, bioinformatics, and cognitive psychology who are engaged with the study of learning, especially of the structure underlying the concept to be learned. Some knowledge of mathematics and theoretical computer science, including formal language theory, automata theory, formal grammars, and algorithmics, is a prerequisite for reading this book. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Computational linguistics. 
650 0 |a Bioinformatics. 
650 1 4 |a Theory of Computation. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Computational Linguistics. 
650 2 4 |a Computational and Systems Biology. 
700 1 |a Heinz, Jeffrey.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Sempere, José M.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783662483930 
776 0 8 |i Printed edition:  |z 9783662483947 
776 0 8 |i Printed edition:  |z 9783662569207 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-662-48395-4  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)