Cargando…

Rankings and Preferences New Results in Weighted Correlation and Weighted Principal Component Analysis with Applications /

This book examines in detail the correlation, more precisely the weighted correlation, and applications involving rankings. A general application is the evaluation of methods to predict rankings. Others involve rankings representing human preferences to infer user preferences; the use of weighted co...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pinto da Costa, Joaquim (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:SpringerBriefs in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-662-48344-2
003 DE-He213
005 20220118061435.0
007 cr nn 008mamaa
008 150915s2015 gw | s |||| 0|eng d
020 |a 9783662483442  |9 978-3-662-48344-2 
024 7 |a 10.1007/978-3-662-48344-2  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Pinto da Costa, Joaquim.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Rankings and Preferences  |h [electronic resource] :  |b New Results in Weighted Correlation and Weighted Principal Component Analysis with Applications /  |c by Joaquim Pinto da Costa. 
250 |a 1st ed. 2015. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2015. 
300 |a X, 91 p. 12 illus., 4 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Statistics,  |x 2191-5458 
505 0 |a Introduction -- The Weighted Rank Correlation Coefficient rW -- The Weighted Rank Correlation Coefficient rW2 -- A Weighted Principal Component Analysis, WPCA1: Application to Gene Expression Data -- A Weighted Principal Component Analysis (WPCA2) for Time Series Data -- Weighted Clustering of Time Series -- Appendix -- References. 
520 |a This book examines in detail the correlation, more precisely the weighted correlation, and applications involving rankings. A general application is the evaluation of methods to predict rankings. Others involve rankings representing human preferences to infer user preferences; the use of weighted correlation with microarray data and those in the domain of time series. In this book we present new weighted correlation coefficients and new methods of weighted principal component analysis. We also introduce new methods of dimension reduction and clustering for time series data, and describe some theoretical results on the weighted correlation coefficients in separate sections. 
650 0 |a Statistics . 
650 0 |a Biometry. 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Biostatistics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783662483435 
776 0 8 |i Printed edition:  |z 9783662483459 
830 0 |a SpringerBriefs in Statistics,  |x 2191-5458 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-662-48344-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)