Cargando…

Geometrical Foundations of Continuum Mechanics An Application to First- and Second-Order Elasticity and Elasto-Plasticity /

This book illustrates the deep roots of the geometrically nonlinear kinematics of generalized continuum mechanics in differential geometry. Besides applications to first- order elasticity and elasto-plasticity an appreciation thereof is particularly illuminating for generalized models of continuum m...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Steinmann, Paul (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Lecture Notes in Applied Mathematics and Mechanics, 2
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-662-46460-1
003 DE-He213
005 20220119143158.0
007 cr nn 008mamaa
008 150325s2015 gw | s |||| 0|eng d
020 |a 9783662464601  |9 978-3-662-46460-1 
024 7 |a 10.1007/978-3-662-46460-1  |2 doi 
050 4 |a TA349-359 
072 7 |a TGMD  |2 bicssc 
072 7 |a SCI096000  |2 bisacsh 
072 7 |a TGMD  |2 thema 
082 0 4 |a 620.105  |2 23 
100 1 |a Steinmann, Paul.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Geometrical Foundations of Continuum Mechanics  |h [electronic resource] :  |b An Application to First- and Second-Order Elasticity and Elasto-Plasticity /  |c by Paul Steinmann. 
250 |a 1st ed. 2015. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2015. 
300 |a XXIV, 517 p. 59 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Applied Mathematics and Mechanics,  |x 2197-6732 ;  |v 2 
505 0 |a Part I Prologue -- Part II Differential Geometry -- Part III Nonlinear Continuum Mechanics -- Part IV Epilogue. 
520 |a This book illustrates the deep roots of the geometrically nonlinear kinematics of generalized continuum mechanics in differential geometry. Besides applications to first- order elasticity and elasto-plasticity an appreciation thereof is particularly illuminating for generalized models of continuum mechanics such as second-order (gradient-type) elasticity and elasto-plasticity.   After a motivation that arises from considering geometrically linear first- and second- order crystal plasticity in Part I several concepts from differential geometry, relevant for what follows, such as connection, parallel transport, torsion, curvature, and metric for holonomic and anholonomic coordinate transformations are reiterated in Part II. Then, in Part III, the kinematics of geometrically nonlinear continuum mechanics are considered. There various concepts of differential geometry, in particular aspects related to compatibility, are generically applied to the kinematics of first- and second- order geometrically nonlinear continuum mechanics. Together with the discussion on the integrability conditions for the distortions and double-distortions, the concepts of dislocation, disclination and point-defect density tensors are introduced. For concreteness, after touching on nonlinear fir st- and second-order elasticity, a detailed discussion of the kinematics of (multiplicative) first- and second-order elasto-plasticity is given. The discussion naturally culminates in a comprehensive set of different types of dislocation, disclination and point-defect density tensors. It is argued, that these can potentially be used to model densities of geometrically necessary defects and the accompanying hardening in crystalline materials. Eventually Part IV summarizes the above findings on integrability whereby distinction is made between the straightforward conditions for the distortion and the double-distortion being integrable and the more involved conditions for the strain (metric) and the double-strain (connection) being integrable.   The book addresses readers with an interest in continuum modelling of solids from engineering and the sciences alike, whereby a sound knowledge of tensor calculus and continuum mechanics is required as a prerequisite.    . 
650 0 |a Mechanics, Applied. 
650 0 |a Solids. 
650 0 |a Geometry, Differential. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Mathematics. 
650 1 4 |a Solid Mechanics. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Applications of Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783662464618 
776 0 8 |i Printed edition:  |z 9783662464595 
830 0 |a Lecture Notes in Applied Mathematics and Mechanics,  |x 2197-6732 ;  |v 2 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-662-46460-1  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)