Cargando…

Fireworks Algorithm A Novel Swarm Intelligence Optimization Method /

This book is devoted to the state-of-the-art in all aspects of fireworks algorithm (FWA), with particular emphasis on the efficient improved versions of FWA. It describes the most substantial theoretical analysis including basic principle and implementation of FWA and modelling and theoretical analy...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Tan, Ying (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-662-46353-6
003 DE-He213
005 20220112182117.0
007 cr nn 008mamaa
008 151011s2015 gw | s |||| 0|eng d
020 |a 9783662463536  |9 978-3-662-46353-6 
024 7 |a 10.1007/978-3-662-46353-6  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Tan, Ying.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Fireworks Algorithm  |h [electronic resource] :  |b  A Novel Swarm Intelligence Optimization Method /  |c by Ying Tan. 
250 |a 1st ed. 2015. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2015. 
300 |a XXXIX, 323 p. 102 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a This book is devoted to the state-of-the-art in all aspects of fireworks algorithm (FWA), with particular emphasis on the efficient improved versions of FWA. It describes the most substantial theoretical analysis including basic principle and implementation of FWA and modelling and theoretical analysis of FWA. It covers exhaustively the key recent significant research into the improvements of FWA so far. In addition, the book describes a few advanced topics in the research of FWA, including multi-objective optimization (MOO), discrete FWA (DFWA) for combinatorial optimization, and GPU-based FWA for parallel implementation. In sequels, several successful applications of FWA on non-negative matrix factorization (NMF), text clustering, pattern recognition, and seismic inversion problem, and swarm robotics, are illustrated in details, which might shed new light on more real-world applications in future. Addressing a multidisciplinary topic, it will appeal to researchers and professionals in the areas of metaheuristics, swarm intelligence, evolutionary computation, complex optimization solving, etc. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 0 |a Numerical analysis. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Control, Robotics, Automation. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783662463529 
776 0 8 |i Printed edition:  |z 9783662463543 
776 0 8 |i Printed edition:  |z 9783662516188 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-662-46353-6  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)