Cargando…

Linear Stochastic Systems A Geometric Approach to Modeling, Estimation and Identification /

This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the b...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Lindquist, Anders (Autor), Picci, Giorgio (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Series in Contemporary Mathematics, 1
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-662-45750-4
003 DE-He213
005 20220114170536.0
007 cr nn 008mamaa
008 150424s2015 gw | s |||| 0|eng d
020 |a 9783662457504  |9 978-3-662-45750-4 
024 7 |a 10.1007/978-3-662-45750-4  |2 doi 
050 4 |a Q295 
050 4 |a QA402.3-402.37 
072 7 |a GPFC  |2 bicssc 
072 7 |a SCI064000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 003  |2 23 
100 1 |a Lindquist, Anders.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Linear Stochastic Systems  |h [electronic resource] :  |b A Geometric Approach to Modeling, Estimation and Identification /  |c by Anders Lindquist, Giorgio Picci. 
250 |a 1st ed. 2015. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 781 p. 37 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Series in Contemporary Mathematics,  |x 2364-0103 ;  |v 1 
505 0 |a Introduction -- Geometry of Second-Order Random Processes -- Spectral Representation of Stationary Processes -- Innovations, Wold Decomposition, and Spectral Factorization -- Wold Decomposition and Spectral Factorization in Continuous Time -- Linear Finite-Dimensional Stochastic Systems -- The Geometry of Splitting Subspaces -- Markovian Representations -- Proper Markovian Representations in Hardy Space -- Stochastic Realization Theory in Continuous Time -- Stochastic Balancing and Model Reduction -- Finite-Interval Stochastic Realization and Partial Realization Theory -- Subspace Identification for Time Series -- Zero Dynamics and the Geometry of the Riccati Inequality -- Smoothing and Interpolation -- Acausal Linear Stochastic Models and Spectral Factorization -- Stochastic Systems with Inputs -- Appendix A. Basic Principles of Deterministic Realization Theory -- Appendix B. Some Topics in Linear Algebra and Hilbert Space Theory. 
520 |a This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramér and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notion of the conditional independence of past and future flows of the relevant signals, are revealed to be fundamentally unifying ideas. The book, based on over 30 years of original research, represents a valuable contribution that will inform the fields of stochastic modeling, estimation, system identification, and time series analysis for decades to come. It also provides the mathematical tools needed to grasp and analyze the structures of algorithms in stochastic systems theory. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 0 |a Probabilities. 
650 0 |a Control engineering. 
650 1 4 |a Systems Theory, Control . 
650 2 4 |a Probability Theory. 
650 2 4 |a Control and Systems Theory. 
700 1 |a Picci, Giorgio.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783662457511 
776 0 8 |i Printed edition:  |z 9783662457498 
776 0 8 |i Printed edition:  |z 9783662526187 
830 0 |a Series in Contemporary Mathematics,  |x 2364-0103 ;  |v 1 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-662-45750-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)