Cargando…

The Universe of Conics From the ancient Greeks to 21st century developments /

This text presents the classical theory of conics in a modern form. It includes many novel results that are not easily accessible elsewhere. The approach combines synthetic and analytic methods to derive projective, affine and metrical properties, covering both Euclidean and non-Euclidean geometries...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Glaeser, Georg (Autor), Stachel, Hellmuth (Autor), Odehnal, Boris (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer Spektrum, 2016.
Edición:1st ed. 2016.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-662-45450-3
003 DE-He213
005 20220112130936.0
007 cr nn 008mamaa
008 160322s2016 gw | s |||| 0|eng d
020 |a 9783662454503  |9 978-3-662-45450-3 
024 7 |a 10.1007/978-3-662-45450-3  |2 doi 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a PBM  |2 thema 
082 0 4 |a 516  |2 23 
100 1 |a Glaeser, Georg.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Universe of Conics  |h [electronic resource] :  |b From the ancient Greeks to 21st century developments /  |c by Georg Glaeser, Hellmuth Stachel, Boris Odehnal. 
250 |a 1st ed. 2016. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer Spektrum,  |c 2016. 
300 |a VIII, 488 p. 350 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1 Introduction -- 2 Euclidean plane -- 3 Differential Geometry -- 4 Eucledian 3-space -- 5 Projective Geometry -- 6 Projective conics -- 7 Polarities and pencils -- 8 Affine Geometry -- 9 Special problems -- 10 Other geometries -- Index. 
520 |a This text presents the classical theory of conics in a modern form. It includes many novel results that are not easily accessible elsewhere. The approach combines synthetic and analytic methods to derive projective, affine and metrical properties, covering both Euclidean and non-Euclidean geometries. With more than two thousand years of history, conic sections play a fundamental role in numerous fields of mathematics and physics, with applications to mechanical engineering, architecture, astronomy, design and computer graphics. This text will be invaluable to undergraduate mathematics students, those in adjacent fields of study, and anyone with an interest in classical geometry. Augmented with more than three hundred fifty figures and photographs, this innovative text will enhance your understanding of projective geometry, linear algebra, mechanics, and differential geometry, with careful exposition and many illustrative exercises. Authors Hellmuth Stachel, born 1942, got his PhD and habilitation in geometry in Graz. 1978 full professor at the Mining University Leoben, 1980-2011 full professor of geometry at the Vienna University of Technology. Coauthor of several books on mathematics and computational geometry and of more than 120 articles on geometry. Georg Glaeser, born 1955, got his PhD and habilitation in geometry at the Vienna University of Technology. Since 1998 full professor of geometry at the University of Applied Arts Vienna. Author and coauthor of more than a dozen books on geometry, mathematics, computational geometry, computer graphics, and photography. Boris Odehnal, born 1973, got his PhD and habilitation in geometry at the Vienna University of Technology. 2011-2012 professor at the Dresden University of Technology, since 2012 lecturer of geometry at the University of Applied Arts Vienna. Author of several dozens of publications on geometry. 
650 0 |a Geometry. 
650 0 |a Mathematics. 
650 1 4 |a Geometry. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Stachel, Hellmuth.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Odehnal, Boris.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783662454497 
776 0 8 |i Printed edition:  |z 9783662454510 
776 0 8 |i Printed edition:  |z 9783662568811 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-662-45450-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)