Data Science, Learning by Latent Structures, and Knowledge Discovery
This volume comprises papers dedicated to data science and the extraction of knowledge from many types of data: structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data...
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | SpringerLink (Online service) |
Otros Autores: | Lausen, Berthold (Editor ), Krolak-Schwerdt, Sabine (Editor ), Böhmer, Matthias (Editor ) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2015.
|
Edición: | 1st ed. 2015. |
Colección: | Studies in Classification, Data Analysis, and Knowledge Organization,
|
Temas: | |
Acceso en línea: | Texto Completo |
Ejemplares similares
-
Comparing Distributions
por: Thas, Olivier
Publicado: (2010) -
Functional Data Analysis with R and MATLAB
por: Ramsay, James, et al.
Publicado: (2009) -
Data Analysis, Machine Learning and Knowledge Discovery
Publicado: (2014) -
Challenges at the Interface of Data Analysis, Computer Science, and Optimization Proceedings of the 34th Annual Conference of the Gesellschaft für Klassifikation e. V., Karlsruhe, July 21 - 23, 2010 /
Publicado: (2012) -
Sports Data Mining
por: Schumaker, Robert P., et al.
Publicado: (2010)