Cargando…

Proofs from THE BOOK

This revised and enlarged fifth edition features four new chapters, which contain highly original and delightful proofs for classics such as the spectral theorem from linear algebra, some more recent jewels like the non-existence of the Borromean rings and other surprises. From the Reviews "......

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Aigner, Martin (Autor), Ziegler, Günter M. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Edición:5th ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-662-44205-0
003 DE-He213
005 20220117204413.0
007 cr nn 008mamaa
008 140806s2014 gw | s |||| 0|eng d
020 |a 9783662442050  |9 978-3-662-44205-0 
024 7 |a 10.1007/978-3-662-44205-0  |2 doi 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
072 7 |a PB  |2 thema 
082 0 4 |a 510  |2 23 
100 1 |a Aigner, Martin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Proofs from THE BOOK  |h [electronic resource] /  |c by Martin Aigner, Günter M. Ziegler. 
250 |a 5th ed. 2014. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a VIII, 308 p. 255 illus., 9 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Number Theory: 1. Six proofs of the infinity of primes -- 2. Bertrand's postulate -- 3. Binomial coefficients are (almost) never powers -- 4. Representing numbers as sums of two squares -- 5. The law of quadratic reciprocity -- 6. Every finite division ring is a field -- 7. The spectral theorem and Hadamard's determinant problem -- 8. Some irrational numbers -- 9. Three times π2/6 -- Geometry: 10. Hilbert's third problem: decomposing polyhedral -- 11. Lines in the plane and decompositions of graphs -- 12. The slope problem -- 13. Three applications of Euler's formula -- 14. Cauchy's rigidity theorem -- 15. The Borromean rings don't exist -- 16. Touching simplices -- 17. Every large point set has an obtuse angle -- 18. Borsuk's conjecture -- Analysis: 19. Sets, functions, and the continuum hypothesis -- 20. In praise of inequalities -- 21. The fundamental theorem of algebra -- 22. One square and an odd number of triangles -- 23. A theorem of Pólya on polynomials -- 24. On a lemma of Littlewood and Offord -- 25. Cotangent and the Herglotz trick -- 26. Buffon's needle problem -- Combinatorics: 27. Pigeon-hole and double counting -- 28. Tiling rectangles -- 29. Three famous theorems on finite sets -- 30. Shuffling cards -- 31. Lattice paths and determinants -- 32. Cayley's formula for the number of trees -- 33. Identities versus bijections -- 34. The finite Kakeya problem -- 35. Completing Latin squares -- Graph Theory: 36. The Dinitz problem -- 37. Permanents and the po wer of entropy -- 38. Five-coloring plane graphs -- 39. How to guard a museum -- 40. Turán's graph theorem -- 41. Communicating without errors -- 42. The chromatic number of Kneser graphs -- 43. Of friends and politicians -- 44. Probability makes counting (sometimes) easy -- About the Illustrations -- Index. 
520 |a This revised and enlarged fifth edition features four new chapters, which contain highly original and delightful proofs for classics such as the spectral theorem from linear algebra, some more recent jewels like the non-existence of the Borromean rings and other surprises. From the Reviews "... Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. ... Aigner and Ziegler... write: "... all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999 "... This book is a pleasure to hold and to look at: ample margins, nice photos, instructive pictures, and beautiful drawings ... It is a pleasure to read as well: the style is clear and entertaining, the level is close to elementary, the necessary background is given separately, and the proofs are brilliant. ..." LMS Newsletter, January 1999 "Martin Aigner and Günter Ziegler succeeded admirably in putting together a broad collection of theorems and their proofs that would undoubtedly be in the Book of Erdös. The theorems are so fundamental, their proofs so elegant, and the remaining open questions so intriguing that every ma thematician, regardless of speciality, can benefit from reading this book. ... " SIGACT News, December 2011. 
650 0 |a Mathematics. 
650 0 |a Number theory. 
650 0 |a Geometry. 
650 0 |a Discrete mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Computer science. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Geometry. 
650 2 4 |a Discrete Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Computer Science. 
700 1 |a Ziegler, Günter M.  |e author.  |0 (orcid)0000-0003-1502-1915  |1 https://orcid.org/0000-0003-1502-1915  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783662442043 
776 0 8 |i Printed edition:  |z 9783662442067 
776 0 8 |i Printed edition:  |z 9783662495926 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-662-44205-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)