Cargando…

Advanced Models of Neural Networks Nonlinear Dynamics and Stochasticity in Biological Neurons /

This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rigatos, Gerasimos G. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-662-43764-3
003 DE-He213
005 20220120211218.0
007 cr nn 008mamaa
008 140827s2015 gw | s |||| 0|eng d
020 |a 9783662437643  |9 978-3-662-43764-3 
024 7 |a 10.1007/978-3-662-43764-3  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Rigatos, Gerasimos G.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Advanced Models of Neural Networks  |h [electronic resource] :  |b Nonlinear Dynamics and Stochasticity in Biological Neurons /  |c by Gerasimos G. Rigatos. 
250 |a 1st ed. 2015. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2015. 
300 |a XXIII, 275 p. 135 illus., 91 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Modelling Biological Neurons in Terms of Electrical Circuits -- Systems Theory for the Analysis of Biological Neuron Dynamics -- Bifurcations and Limit Cycles in Models of Biological Systems -- Oscillatory Dynamics in Biological Neurons -- Synchronization of Circadian Neurons and Protein Synthesis Control -- Wave Dynamics in the Transmission of Neural Signals -- Stochastic Models of Biological Neuron Dynamics -- Synchronization of Stochastic Neural Oscillators Using Lyapunov Methods -- Synchronization of Chaotic and Stochastic Neurons Using Differential Flatness Theory -- Attractors in Associative Memories with Stochastic Weights -- Spectral Analysis of Neural Models with Stochastic Weights -- Neural Networks Based on the Eigenstates of the Quantum Harmonic Oscillator -- Quantum Control and Manipulation of Systems and Processes at Molecular Scale -- References -- Index. 
520 |a This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783662437636 
776 0 8 |i Printed edition:  |z 9783662437650 
776 0 8 |i Printed edition:  |z 9783662515570 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-662-43764-3  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)