Cargando…

Data Analytics Models and Algorithms for Intelligent Data Analysis /

This book is a comprehensive introduction to the methods and algorithms of modern data analytics. It provides a sound mathematical basis, discusses advantages and drawbacks of different approaches, and enables the reader to design and implement data analytics solutions for real-world applications. T...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Runkler, Thomas A. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2016.
Edición:2nd ed. 2016.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-658-14075-5
003 DE-He213
005 20220120215025.0
007 cr nn 008mamaa
008 160726s2016 gw | s |||| 0|eng d
020 |a 9783658140755  |9 978-3-658-14075-5 
024 7 |a 10.1007/978-3-658-14075-5  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Runkler, Thomas A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Data Analytics  |h [electronic resource] :  |b Models and Algorithms for Intelligent Data Analysis /  |c by Thomas A. Runkler. 
250 |a 2nd ed. 2016. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Vieweg,  |c 2016. 
300 |a XII, 150 p. 66 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Data Analytics -- Data and Relations -- Data Preprocessing -- Data Visualization -- Correlation -- Regression -- Forecasting -- Classification -- Clustering. 
520 |a This book is a comprehensive introduction to the methods and algorithms of modern data analytics. It provides a sound mathematical basis, discusses advantages and drawbacks of different approaches, and enables the reader to design and implement data analytics solutions for real-world applications. This book has been used for more than ten years in the Data Mining course at the Technical University of Munich. Much of the content is based on the results of industrial research and development projects at Siemens. Content • Data Analytics • Data and Relations • Data Preprocessing • Data Visualization • Correlation • Regression • Forecasting • Classification • Clustering Target Groups Students of computer science, mathematics and engineering Data analytics practitioners The Author Thomas A. Runkler is Principal Research Scientist at Siemens Corporate Technology and Professor for Computer Science at the Technical University of Munich. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence-Data processing. 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Data Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783658140748 
776 0 8 |i Printed edition:  |z 9783658140762 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-658-14075-5  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)