Cargando…

Effect of Noise on a Model Thermoacoustic System at its Stability Boundary

In experiments on a prototypical combustor, Richard Steinert identifies new insights on the impact of noise on the phenomenon known as thermoacoustic instability. The phenomenon is a concerning issue which creates a technical limit on the efficiency and environmental impact of fossil fuels combustio...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Steinert, Richard (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2016.
Edición:1st ed. 2016.
Colección:BestMasters,
Temas:
Acceso en línea:Texto Completo
Descripción
Sumario:In experiments on a prototypical combustor, Richard Steinert identifies new insights on the impact of noise on the phenomenon known as thermoacoustic instability. The phenomenon is a concerning issue which creates a technical limit on the efficiency and environmental impact of fossil fuels combustion in industrial combustors. It poses a threat to the structural integrity of practical systems such as gas turbine combustors and rocket engines. The experiments demonstrate that thermoacoustic systems feature an interesting noise-induced behaviour known as coherence resonance - a coherent response of dynamical systems close to their stability boundary that is induced by stochastic excitation. The work contained in this publication is an example illustrating the importance of fundamental considerations in solving perplexing engineering issues. Contents Determination of the System's Stability Characteristics Single Frequency Excitation in the Bistable Region Noise Induced Response in the Stable Region Target Groups Researchers and students in the fields of physical engineering, thermoacoustics, combustion and dynamical systems Practitioners in these areas The Author Richard Steinert wrote his Master's Thesis at the chair of Fluid Dynamics at the Technische Universität Berlin.
Descripción Física:XIV, 44 p. 23 illus. online resource.
ISBN:9783658138233
ISSN:2625-3615