Cargando…

Analysis of Single-Cell Data ODE Constrained Mixture Modeling and Approximate Bayesian Computation /

Carolin Loos introduces two novel approaches for the analysis of single-cell data. Both approaches can be used to study cellular heterogeneity and therefore advance a holistic understanding of biological processes. The first method, ODE constrained mixture modeling, enables the identification of sub...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Loos, Carolin (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2016.
Edición:1st ed. 2016.
Colección:BestMasters,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-658-13234-7
003 DE-He213
005 20230810213720.0
007 cr nn 008mamaa
008 160317s2016 gw | s |||| 0|eng d
020 |a 9783658132347  |9 978-3-658-13234-7 
024 7 |a 10.1007/978-3-658-13234-7  |2 doi 
050 4 |a QH323.5 
050 4 |a QH324.2-324.25 
072 7 |a PBW  |2 bicssc 
072 7 |a PSA  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PSAX  |2 thema 
082 0 4 |a 570.285  |2 23 
100 1 |a Loos, Carolin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Analysis of Single-Cell Data  |h [electronic resource] :  |b ODE Constrained Mixture Modeling and Approximate Bayesian Computation /  |c by Carolin Loos. 
250 |a 1st ed. 2016. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2016. 
300 |a XXI, 92 p. 26 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a BestMasters,  |x 2625-3615 
505 0 |a Modeling and Parameter Estimation for Single-Cell Data -- ODE Constrained Mixture Modeling for Multivariate Data -- Approximate Bayesian Computation Using Multivariate Statistics. 
520 |a Carolin Loos introduces two novel approaches for the analysis of single-cell data. Both approaches can be used to study cellular heterogeneity and therefore advance a holistic understanding of biological processes. The first method, ODE constrained mixture modeling, enables the identification of subpopulation structures and sources of variability in single-cell snapshot data. The second method estimates parameters of single-cell time-lapse data using approximate Bayesian computation and is able to exploit the temporal cross-correlation of the data as well as lineage information. Contents Modeling and Parameter Estimation for Single-Cell Data ODE Constrained Mixture Modeling for Multivariate Data Approximate Bayesian Computation Using Multivariate Statistics Target Groups Researchers and students in the fields of (bio-)mathematics, statistics, bioinformatics System biologists, biostatisticians, bioinformaticians The Author Carolin Loos is currently doing her PhD at the Institute of Computational Biology at the Helmholtz Zentrum München. She is member of the junior research group "Data-driven Computational Modeling". 
650 0 |a Biomathematics. 
650 0 |a Mathematics  |x Data processing. 
650 0 |a Bioinformatics. 
650 1 4 |a Mathematical and Computational Biology. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Computational and Systems Biology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783658132330 
776 0 8 |i Printed edition:  |z 9783658132354 
830 0 |a BestMasters,  |x 2625-3615 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-658-13234-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)