Cargando…

Forecasting High-Frequency Volatility Shocks An Analytical Real-Time Monitoring System /

This thesis presents a new strategy that unites qualitative and quantitative mass data in form of text news and tick-by-tick asset prices to forecast the risk of upcoming volatility shocks. Holger Kömm embeds the proposed strategy in a monitoring system, using first, a sequence of competing estimat...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kömm, Holger (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Gabler, 2016.
Edición:1st ed. 2016.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-658-12596-7
003 DE-He213
005 20220118213527.0
007 cr nn 008mamaa
008 160208s2016 gw | s |||| 0|eng d
020 |a 9783658125967  |9 978-3-658-12596-7 
024 7 |a 10.1007/978-3-658-12596-7  |2 doi 
050 4 |a HB172.5 
072 7 |a KCB  |2 bicssc 
072 7 |a BUS039000  |2 bisacsh 
072 7 |a KCB  |2 thema 
082 0 4 |a 339  |2 23 
100 1 |a Kömm, Holger.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Forecasting High-Frequency Volatility Shocks  |h [electronic resource] :  |b An Analytical Real-Time Monitoring System /  |c by Holger Kömm. 
250 |a 1st ed. 2016. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Gabler,  |c 2016. 
300 |a XXIX, 171 p. 19 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Integrated Volatility -- Zero-inflated Data Generation Processes -- Algorithmic Text Forecasting. 
520 |a This thesis presents a new strategy that unites qualitative and quantitative mass data in form of text news and tick-by-tick asset prices to forecast the risk of upcoming volatility shocks. Holger Kömm embeds the proposed strategy in a monitoring system, using first, a sequence of competing estimators to compute the unobservable volatility; second, a new two-state Markov switching mixture model for autoregressive and zero-inflated time-series to identify structural breaks in a latent data generation process and third, a selection of competing pattern recognition algorithms to classify the potential information embedded in unexpected, but public observable text data in shock and nonshock information. The monitor is trained, tested, and evaluated on a two year survey on the prime standard assets listed in the indices DAX, MDAX, SDAX and TecDAX. Contents • Integrated Volatility • Zero-inflated Data Generation Processes • Algorithmic Text Forecasting Target Groups • Teachers and students of economic science with a focus on financial econometrics< • Executives and consultants in the field of business informatics and advanced statistics About the Author Dr. Holger Kömm is research associate at the chair of statistics and quantitative methods in the economics & business department of the Catholic University Eichstätt-Ingolstadt. . 
650 0 |a Macroeconomics. 
650 0 |a Economic development. 
650 0 |a Econometrics. 
650 1 4 |a Macroeconomics and Monetary Economics. 
650 2 4 |a Economic Development, Innovation and Growth. 
650 2 4 |a Quantitative Economics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783658125950 
776 0 8 |i Printed edition:  |z 9783658125974 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-658-12596-7  |z Texto Completo 
912 |a ZDB-2-ECF 
912 |a ZDB-2-SXEF 
950 |a Economics and Finance (SpringerNature-41170) 
950 |a Economics and Finance (R0) (SpringerNature-43720)